• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular primitiva atraves do metodo se substituiçao

Calcular primitiva atraves do metodo se substituiçao

Mensagempor rodrigonapoleao » Seg Dez 17, 2012 17:25

como calculo a seguinte primitiva utilizando o método de primitivação por substituição sin2x.cos3x ?
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: Calcular primitiva atraves do metodo se substituiçao

Mensagempor e8group » Qua Dez 26, 2012 21:22

Identidades trigonométricas ,use a seguinte :

sin(\psi)cos(\gamma)=\frac{sin(\gamma+\psi)-sin(\gamma-\psi)}{2}


Onde: \gamma = 3x e\psi = 2x .


Oque acha ? Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}