• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas ]essa derivada já ta esquentando minha cabeça.

[derivadas ]essa derivada já ta esquentando minha cabeça.

Mensagempor vinicastro » Sáb Dez 15, 2012 22:42

calcule a derivada de ordem 33 da função f(x)=sen(x)+e^x/2.

eu comecei mais fique com duvidas f'=cos(x)+e^x/2*1/2 nem sei se ta certo.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor e8group » Sáb Dez 15, 2012 23:04

Boa noite , qual das três funções a seguir corresponde com a do enunciado .

i)

f(x) = \frac{ sin(x) + e^x}{2}


ii)

f(x) = sin(x) + \frac{e^x}{2}

iii)

f(x) = sin(x) + e^{x/2}

Qual das três ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 09:58

é a terceira.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 10:06

f(x)=sen(x)+ \right){e}^{\frac{x}{2}}
É ESSA AQUI, ESTOU APRENDENDO USAR AS FERRAMENTAS AINDA.
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor e8group » Dom Dez 16, 2012 13:57

OK !

Note que ,


D^{33}_x e^{x/2} =   ( e^{x/2})    \underset{\text{33 vezes}}{\underbrace{\cdot \frac{x'}{2} \cdot  \frac{x'}{2}  \cdots  \frac{x'}{2}}} =  \frac{e^{x/2}}{2^{33}}



e


D^{33}_x sin(x) = D^{33 - 1} _x   cos(x) = D_x^{33-2}(-sin(x)) = D^{33-3}_x cos(x) = D_x^{33-4}(-sin(x)) =  (\hdots) \\ 

\implies   D^{33}_x (sin(x)) = cos(x) .

Basta observar o comportamento acima de cada derivação ,assim chega-se na resposta acima , Logo D^{33}_x( e^{x/2} + sin(x) ) =  \frac{ e^{x/2}}{2^{33}}  +   cos(x) .


Qual quer dúvida só comentar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivadas ]essa derivada já ta esquentando minha cabeça

Mensagempor vinicastro » Dom Dez 16, 2012 15:57

poxa muito obrigado.

mas o sinal da explicação ficou trocado
y=sen(x)
y'=cos(x)
y''=-sen(x)
y'''=-cos(x)
y^4=sen(x)
vinicastro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Dez 15, 2012 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.