• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Claudin » Sáb Dez 01, 2012 17:26

Não sei como resolver o seguinte exercicio

Mostre que s e f for uma função continua [a,b] então |\int_{a}^{b}f(x)dx|\leq\int_{a}^{b}|f(x)|dx

Sugestão: -|f(x)|\leqf(x)\leq|f(x)|

Use o exercicio anterior e prove também que

|\int_{0}^{2\Pi}f(x)sen(2x)dx|\leq\int_{0}^{2\Pi}|f(x)|dx

Não nem como começar em ambos os exercícios.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral

Mensagempor LuizAquino » Ter Dez 11, 2012 14:26

Claudin escreveu:Não sei como resolver o seguinte exercicio

Mostre que s e f for uma função continua [a,b] então |\int_{a}^{b}f(x)dx|\leq\int_{a}^{b}|f(x)|dx

Sugestão: -|f(x)|\leq f(x)\leq|f(x)|

Use o exercicio anterior e prove também que

|\int_{0}^{2\Pi}f(x)sen(2x)dx|\leq\int_{0}^{2\Pi}|f(x)|dx

Não nem como começar em ambos os exercícios.


Comece usando a sugestão:

-|f(x)|\leq f(x)\leq|f(x)|

Como f é contínua em [a, b] (e portanto |f| também é contínua em [a, b]), podemos integrar cada parte dessa inequação, obtendo assim:

- \int_a^b |f(x)|\,dx \leq \int_a^b f(x)\,dx \leq \int_a^b |f(x)|\,dx

Por outro lado, temos que:

|f(x)| \geq 0

\int_a^b |f(x)|\, dx \geq \int_a^b 0\,dx

\int_a^b |f(x)|\, dx \geq 0

Além disso, dos conhecimentos sobre módulos, sabemos que se -u \leq v \leq u e u \geq 0, então |v|\leq u . Usando esse conhecimento com u = \int_a^b |f(x)|\, dx e v = \int_a^b f(x)\,dx, concluímos que:

- \int_a^b |f(x)|\,dx \leq \int_a^b f(x)\,dx \leq \int_a^b |f(x)|\,dx \implies \left|\int_a^b f(x)\,dx\right| \leq \int_a^b |f(x)|\,dx

Usando esse resultado no outro exercício:

\left|\int_{0}^{2\pi}f(x)\,\textrm{sen}\, 2x\,dx\right| \leq \int_{0}^{2\pi} |f(x)\,\textrm{sen}\, 2x|\,dx

Em seguida, usando a propriedade dos módulos dada por |ab|=|a||b|, temos que:

\left|\int_{0}^{2\pi}f(x)\,\textrm{sen}\, 2x\,dx\right| \leq \int_{0}^{2\pi} |f(x)||\,\textrm{sen}\, 2x|\,dx

Agora basta concluir o exercício usando o fato de que |\,\textrm{sen}\,\alpha|\leq 1 para qualquer ângulo \alpha .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.