• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Dúvida exercício

[Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 16:18

Estou com dúvida no seguinte exercício:

\int x^2\sqrt{1+x} dx = \int x^2(1+x)^\frac{1}{2} dx

É possível fazer pelo método de substituição?

Tentei da seguinte forma:

u=1+x

\frac{du}{dx}=1

Mas não tem como fazer o x^2 virar 1 porque eu teria que colocar valores de x dentro da integral...
Como resolvê-lo?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:03

Não está errado. Note que se u = 1+x, então x = u-1, portanto x^2 = (u-1)^2. Daí você terá

\int x^2 \sqrt{1+x} \, dx = \int (u-1)^2 \cdot u^{\frac{1}{2}} \, du.

Esta é simples de resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:23

\int (u-1)^2 du = \frac{(u-1)^3}{3} + C ?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:26

Não, você esqueceu de multiplicar por u^{\frac{1}{2}}. Expanda (u-1)^2, multiplique e aí sim terá a integral de um polinômio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 17:47

Ah sim, prossegui da seguinte forma:

\int (u^2-2u+1).u^\frac{1}{2} du

\int u^\frac{5}{2}-2u^\frac{3}{2}+u^\frac{1}{2} du

\frac{2}{7}u^\frac{7}{2}-\frac{4}{5}u^\frac{5}{2}+\frac{2}{3}u^\frac{3}{2}+C

\frac{2}{7}(1+x)^\frac{7}{2}-\frac{4}{5}(1+x)^\frac{5}{2}+\frac{2}{3}(1+x)^\frac{2}{3}+C

Se eu não errei nenhuma continha, é isso né?
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 17:54

Sim, está correto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:17

Por que será que de acordo com o Wolframalpha, possíveis resultados seriam esta imagem em anexo e...
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg
Resultado simplificado
WolframAlpha--intx2sqrt1x--2012-10-28_1454.jpg (5.75 KiB) Exibido 4054 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MrJuniorFerr » Dom Out 28, 2012 18:18

e essa outra imagem em anexo.

Não estão muito diferentes do meu resultado?
Anexos
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg
Outros possíveis resultados
WolframAlpha--intx2sqrt1x--2012-10-28_1514_2.jpg (4.7 KiB) Exibido 4052 vezes
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Integrais] Dúvida exercício

Mensagempor MarceloFantini » Dom Out 28, 2012 18:38

Vá no Wolfram, digite Expand[d], onde d é a expressão que encontrou. Verá que são iguais, ao expandir o resultado do Wolfram também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59