• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Area de Superfície de Revolução

Area de Superfície de Revolução

Mensagempor ariclenesmelo » Seg Out 22, 2012 22:00

Estou com a seguinte questão..
Inicialmente e esboçada em um plano cartesiano, a função com seus limites que dará o formato da peça, posteriormente, ocorre uma rotação em um de seus eixos, formando-a. Ocorreu uma rotação em x da função f(x)= Raiz X ou x^1/2, que foi limitada pelos pontos (1,1) e (4,2), pode-se concluir que a area da figura formada e: considere raiz 17 = 4,1 raiz 5 = 2,2 e PI= 3,14..

Alternativas .. A) 30 u.a B) 30.7 u.a C) 31,4 u.a D) 31,8 u.a E) 32,6 u.a

Tentei de tudo mais não consigo chegar a nenhum desses valores.. Gostaria da ajuda de vocês..
ariclenesmelo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 21:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: Area de Superfície de Revolução

Mensagempor young_jedi » Seg Out 22, 2012 23:25

A area de um superficie de revolução entorno de x de f(x) é dada por

2\pi\int f(x)\sqrt{1+(f'(x))^2}.dx

f(x)=x^{\frac{1}{2}}

f'(x)=\frac{1}{2}.\frac{1}{x^{\frac{1}{2}}}

substituindo na integral

2\pi\int_{1}^{4} \sqrt{x}\sqrt{1+\left(\frac{1}{2}.\frac{1}{\sqrt{x}}\right)^2}.dx=

2\pi\int_{1}^{4} \sqrt{x}\sqrt{\frac{4x+1}{4x}}.dx=

2\pi\int_{1}^{4} \sqrt{x.\frac{4x+1}{4x}}.dx=

2\pi\int_{1}^{4} \frac{1}{2}.\sqrt{4x+1}.dx=

2\pi.\frac{1}{3.4}(4x+1)^{\frac{3}{2}}\Big|_{1}^{4}=

2\pi.\frac{1}{12}.\left(\sqrt{17}\right)^3-2\pi.\frac{1}{12}.\left(\sqrt{5}\right)^3

substituindo os valaores aproximados cheguei em 30.49 o valor mais proximo é 30.7 acho que é essa a resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Area de Superfície de Revolução

Mensagempor ariclenesmelo » Ter Out 23, 2012 00:24

Amigo, muito Obrigado por sua ajuda, a resposta esta correta, só tenho uma duvida, como chegou a solução do penúltimo parágrafo 1/3x4 pois o resto eu consegui entender, acompanhei o passo a passo pelo wolframalpha e ele diferentemente chegou ao 1/8 x 2/3 que resumindo chegaria na mesma solução que você 1/12 . Poderia me ajudar a chegar nessa sua solução de 1/3x4.. desde já agradeço sua ajuda.
ariclenesmelo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 21:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas para Internet
Andamento: formado

Re: Area de Superfície de Revolução

Mensagempor young_jedi » Ter Out 23, 2012 11:37

Opa, amigo sem problemas

pelo que entendi é na parte da integração certo?

\int_{1}^{4}\frac{1}{2}\sqrt{4x+1}.dx

primeiro eu coloquei o 1/2 pra fora da integral

\frac{1}{2}\int_{1}^{4}\sqrt{4x+1}.dx

utilizei integração por substituição de variaveis

u=4x+1

du=4.dx

substituindo

\frac{1}{2}\int\sqrt{u}.\frac{du}{4}

\frac{1}{2}\frac{1}{4}\int\sqrt{u}.du

intergrando

\frac{1}{2}\frac{1}{4}\frac{1}{\frac{3}{2}}.u^{\frac{3}{2}}

voltando para variavel x e simplificando

\frac{1}{3.4}(4x+1)^{\frac{3}{2}}

acredito que seja isso
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59