• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Indefinida] Um probleminha para provar...

[Integral Indefinida] Um probleminha para provar...

Mensagempor Lucas Monteiro » Seg Out 22, 2012 22:43

Provar que integral de 1/((1 -x²)¹/²) dx = arcsen(x) + k, k constante, -1<x<1.
Não estou conseguindo provar a ida, mas a volta consegui provar.
Lucas Monteiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Jun 25, 2012 18:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Indefinida] Um probleminha para provar...

Mensagempor MarceloFantini » Ter Out 23, 2012 00:12

Não existe ida e volta. Se você sabe que \frac{d}{dx} \, \arcsin (x) +k = \frac{1}{\sqrt{1-x^2}}, então está resolvido.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?