• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor will94 » Qui Out 18, 2012 15:10

Porque f(x)=\sqrt[3]{x} é contínua, mas não é derivavel no intervalo [-1,1] ?
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada]

Mensagempor e8group » Qui Out 18, 2012 15:34

A função f não é derivavel no intervalo [-1,1] por que o coeficiente angular da reta tangente converge para +\infty quando x \to 0 ,como 0 \in [-1,1] concluimos que f' não estar definida em [-1,1] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada]

Mensagempor MarceloFantini » Qui Out 18, 2012 17:13

Note que f'(x) = \frac{1}{3} x^{\frac{-2}{3}} = \frac{1}{3 x^{\frac{2}{3}}}. Ela só não está definida na origem.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?