• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Verificar a Resolução I

[Limite] Verificar a Resolução I

Mensagempor eli83 » Ter Out 09, 2012 09:55

Encontre o limite da função:

\lim_{x\to0}\frac{\sqrt{x+2}-\sqrt2}{x}

Não podemos aplicar a definição direta de limite, pois se substituirmos x por zero, teremos o denominador igual a zero.
Então racionalizando, temos:

\frac{\sqrt{x+2}-\sqrt2}{x} . \frac{(\sqrt{x+2}+\sqrt2)}{(\sqrt{x+2}+\sqrt2)} =

= \frac{(x + 2)-2}{(x)(\sqrt{x+2}+\sqrt2)} = \frac{x}{x(\sqrt{x+2}+\sqrt2)} =

= \frac{1}{(\sqrt{x+2}+\sqrt2)}


Então:

\lim_{x\to0}\frac{\sqrt{x+2}-\sqrt2}{x} = \lim_{x\to0}\frac{1}{(\sqrt{x+2}+\sqrt2)} = \frac{\sqrt2} {4}

Gostaria que alguem verificasse a minha resolução.
Editado pela última vez por eli83 em Qua Out 10, 2012 00:25, em um total de 1 vez.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: [Limite] Verificar a Resolução I

Mensagempor young_jedi » Ter Out 09, 2012 10:23

Tambem esta certo!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Verificar a Resolução I

Mensagempor MarceloFantini » Ter Out 09, 2012 11:03

Assim como no outro tópico, após aplicar o limite não deve mais escrevê-lo. Logo sua resposta deve ser \lim_{x \to 0} \frac{1}{\sqrt{x+2} +2}} = \frac{1}{2 \sqrt{2}} = \frac{\sqrt{2}}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limite] Verificar a Resolução I

Mensagempor eli83 » Qua Out 10, 2012 00:31

Erro Corrigido.
Grata.
eli83
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Out 06, 2012 11:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}