• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite Trigonométrico] Não consigo começar a resolver

[Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Ter Out 09, 2012 19:30

O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?

Obrigado!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 14:43

ninguém? =/
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 14:47

Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor LuizAquino » Sex Out 12, 2012 15:32

dileivas escreveu:O limite é o seguinte:

\lim_{x\rightarrow -2} \frac{tan (\pi x)}{x+2}

Pensei em multiplicar em cima e embaixo por pi*x pra tentar cair num limite fundamental, mas não bate com a resposta (que seria pi). Deve ser porque x não está tendendo a zero, não configurando um limite fundamental.

Alguém poderia me ajudar?


young_jedi escreveu:Amigo não sei se voce ja estudou derivada e Teorema de L'hospital

esse limite ai pode ser resolvido por esse metodo, comente ai qualquer cosia


Para resolver esse exercício sem usar a Regra de L'Hospital, podemos proceder como indicado abaixo.

Fazendo a substituição de variáveis u = x + 2 , como temos x\to -2 sabemos que u \to 0 .

Ficamos então com:

\lim_{x\to -2} \frac{\textrm{tg}\, (\pi x)}{x+2} = \lim_{u\to 0} \frac{\textrm{tg}\, (\pi u - 2\pi)}{u}

Lembrando da definição de tangente, podemos ainda escrever que:

= \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u - 2\pi)}{u\cos (\pi u - 2\pi)}

Aplicando então a identidade trigonométrica \textrm{sen}\,(\alpha - \beta) = \textrm{sen}\,\alpha\cos \beta - \,\textrm{sen}\,\beta\cos \alpha , temos que:

= \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Agora tente concluir o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:12

Meu resultado ainda está errado... teria que dar \pi. O que estou errando?

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} *\lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)} = \lim_{u\to 0} \frac{1}{\cos (\pi u - 2\pi)},

Tendo que \lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{\pi u} é um limite fundamental, que é igual a 1.

Como u\rightarrow 0 temos

\frac{1}{\cos (- 2\pi)} = 1

Não poderei aplicar o Teorema de L'hospital na prova 1 ainda, por isso tenho que resolver esse limite de outra forma...

Obrigado pela ajuda!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor young_jedi » Sex Out 12, 2012 17:20

voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:33

Apesar de não saber o que errei na resposta anterior, consegui chegar no resultado de outra forma:

\lim_{u\to 0} \frac{\textrm{sen}\, \pi u}{u\cos (\pi u - 2\pi)}

Se aplicarmos a identidade trigonométrica \cos\alpha \cos\beta + \sin\alpha \sin\beta, teremos

\lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{u\cos (\pi u)} *\frac{\pi}{\pi} = \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} * \lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como \lim_{u\to 0} \frac{\textrm{sen}\, (\pi u)}{\pi u} é um limite fundamental, que é igual a 1, resta

\lim_{u\to 0} \frac{\pi}{\cos (\pi u)}

Como u \rightarrow 0, temos

\frac{\pi}{\cos (0)} = \pi

Está correto!?

Obrigado! =D
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: [Limite Trigonométrico] Não consigo começar a resolver

Mensagempor dileivas » Sex Out 12, 2012 17:36

young_jedi escreveu:voce multiplica e divide a equação por \pi, para chegar ao limite fundamental até ai esta certo,
mais em sua proxima passgem matematica voce "desaparece " com o \pi que esta em cima, acho que voce se esqueceu dele por isso o resultado não da certo.


Aaaah! Verdade! Só tinha esquecido do \pi! Daria certo também, foi falta de atenção...

Obrigado! Ajudaram muito!
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?