• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área sobre a curva

Área sobre a curva

Mensagempor bahcore » Qui Set 20, 2012 04:58

Por favor, ainda não consegui resolver esse aqui. Me ajudem com o passo a passo?

A área sob a curva y=e^(x/2) de x=-3 a x=2 é dada por:

A) 4,99
B) 3,22
C) 6,88
D) 1,11
E) 2,22

Desde ja muito obrigada!!
bahcore
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Set 20, 2012 04:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Área sobre a curva

Mensagempor MarceloFantini » Qui Set 20, 2012 13:16

Basta calcular \int_{-3}^2 e^{\frac{x}{2}} \, dx. Qual foi a primitiva que você encontrou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área sobre a curva

Mensagempor dgo » Dom Set 23, 2012 14:44

boas, substitui os valores e não bateu nenhum resultado , pode me ajudar mais por favor
dgo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 23, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Área sobre a curva

Mensagempor MarceloFantini » Dom Set 23, 2012 15:37

Qual foi a primitiva que você encontrou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área sobre a curva

Mensagempor bahcore » Seg Set 24, 2012 04:22

o problema é que ainda não sei fazer calculos com esse "e", então não consegui sair daí...
bahcore
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Set 20, 2012 04:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Área sobre a curva

Mensagempor MarceloFantini » Seg Set 24, 2012 14:50

A primitiva desta função é 2e^{\frac{x}{2}}, agora basta usar o teorema fundamental do cálculo. Para ver que é esta a primitiva, faça x=2u, então dx = 2du e faça a integração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}