• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Problema

Derivada - Problema

Mensagempor iceman » Dom Set 16, 2012 20:05

A função horária de um móvel é definida por S=6T+T^2 , qual o espaço percorrido quando:

a)T= 0 Seg
b)T= 1 Seg
c)T= 2 Seg

Alguém ajuda, por favor ?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema

Mensagempor Renato_RJ » Dom Set 16, 2012 20:34

Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Derivada - Problema

Mensagempor iceman » Dom Set 16, 2012 20:42

Renato_RJ escreveu:Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.



A questão só fala isso....
Eu fiz assim, poderia ver se está certo?


6.0 + 2.0 = 0

6.1 + 2.1 = 9

6.2+2.2 = 16
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema

Mensagempor Renato_RJ » Dom Set 16, 2012 20:49

iceman escreveu:
Renato_RJ escreveu:Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.



A questão só fala isso....
Eu fiz assim, poderia ver se está certo?


6.0 + 2.0 = 0

6.1 + 2.1 = 9

6.2+2.2 = 16


Campeão, se o problema dá a função horária da posição e pede a velocidade nos instantes dados, então você cometeu um engano pequeno, lembre-se que calculamos S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T, então não precisa multiplicar o 6 pela variável T (olha a derivada como ficou)....

[ ]'s
Renato..
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.