por TonyR » Sáb Set 01, 2012 13:18
Olá,
Estava tentando resolver esse exercício de limite lateral através de produtos notáveis e fatoração, mas acabei empacando. Alguém poderia ajudar?

Tentei colocando o x em evidência, mas o "+1" acaba atrapalhando a simplificação. Teria como resolver o exercício utilizando produtos notáveis ou não?
Obrigado.
-
TonyR
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Set 01, 2012 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por LuizAquino » Sáb Set 01, 2012 15:41
TonyR escreveu:Olá,
Estava tentando resolver esse exercício de limite lateral através de produtos notáveis e fatoração, mas acabei empacando. Alguém poderia ajudar?

Tentei colocando o x em evidência, mas o "+1" acaba atrapalhando a simplificação. Teria como resolver o exercício utilizando produtos notáveis ou não?
O número 1 não é raiz do polinômio no denominador. Sendo assim, ele
não terá um fator do tipo (x - 1). Ou seja, você não poderá efetuar uma simplificação com o numerador.
De qualquer modo, não é necessário simplificar coisa alguma nesse exercício, pois esse limite não apresenta uma indeterminação. Ele pode ser resolvido diretamente:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Limites laterais..!
por mih123 » Ter Ago 28, 2012 15:40
- 8 Respostas
- 5108 Exibições
- Última mensagem por MarceloFantini

Qua Ago 29, 2012 16:59
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2794 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- LIMITES LATERAIS
por Fabio Cabral » Qua Out 06, 2010 11:48
- 6 Respostas
- 4245 Exibições
- Última mensagem por Fabio Cabral

Qui Out 07, 2010 11:04
Funções
-
- Limites laterais
por valeuleo » Sáb Abr 09, 2011 21:07
- 8 Respostas
- 5889 Exibições
- Última mensagem por MarceloFantini

Dom Abr 10, 2011 21:00
Cálculo: Limites, Derivadas e Integrais
-
- Limites Laterais
por FernandaBS » Sex Mai 25, 2012 18:04
- 3 Respostas
- 3706 Exibições
- Última mensagem por Guill

Sáb Mai 26, 2012 15:26
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.