• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de um Logaritmo.

Derivada de um Logaritmo.

Mensagempor Guadalupe » Sex Jul 20, 2012 17:37

f(x)=log2(2x+4), onde 2 é a base.

No livro, essa questão tem como resposta 2/2x+4.log2(e), onde 2 é a base. Quando tento resolvê-la utilizando a regra da cadeia para logaritmos, só chego até 2/(2x+4)ln2. Gostaria de saber qual procedimento que devo seguir para obter a mesma resposta do livro.

Desde já, agradeço.
Guadalupe
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 20, 2012 17:05
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor e8group » Sex Jul 20, 2012 17:45

Guadalupe ,primeiramente você tentou a mudança de base no logaritmo ? tente expor em base e .Depois deriva-a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor Guadalupe » Sex Jul 20, 2012 17:57

santhiago escreveu:Guadalupe ,primeiramente você tentou a mudança de base no logaritmo ? tente expor em base e .Depois deriva-a .


Desculpe, mas ainda não consegui acompanhar seu raciocínio.
Tentei fazer mudança de base mas não deu certo. =/
Você pode explicar um pouco mais?
Guadalupe
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 20, 2012 17:05
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor e8group » Sex Jul 20, 2012 18:13

sim , observe que :

f(x) = log_2(2x+4) = \frac{1}{log_e 2}log_e(2x+4) = \frac{1}{ln 2}(ln(2x+4)) , a parti daí f fica mais fácil de ser derivada de acordo com as regras .

Cabe a você agora tomar a derivada de primeira ordem de f .

Caso dúvidas com a respectiva derivada de f ,poste aqui ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor Guadalupe » Sex Jul 20, 2012 18:40

santhiago escreveu:sim , observe que :

f(x) = log_2(2x+4) = \frac{1}{log_e 2}log_e(2x+4) = \frac{1}{ln 2}(ln(2x+4)) , a parti daí f fica mais fácil de ser derivada de acordo com as regras .

Cabe a você agora tomar a derivada de primeira ordem de f .

Caso dúvidas com a respectiva derivada de f ,poste aqui ...


Consegui assimilar o desenvolvimento dessa questão até a parte em que você a resolveu, mas a partir de 1/ln 2 . (ln(2x+4)) eu derivo pela regra da multiplicação?
Guadalupe
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 20, 2012 17:05
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor e8group » Sex Jul 20, 2012 20:36

Guadalupe , Vamos utilizar a regra da cadeia, para facilitar vamos reescrever f(x) em função de uma composição de funções .Sendo assim considere por exemplo ,


h(x) = ln(x) e g(x) = 2x+4

logo temos que f(x) = \frac{h(g(x))}{ln(2)}  \implies f'(x) = \frac{h'(g(x))g'(x)}{ln(2)} ou utilizando a notação de Leibniz \frac{d}{dx} f(x) = \frac{\frac{d}{dg}h\frac{d}{dx}g}{ln(2)}

Vale ressaltar que sua solução está correta pois f'(x) = \frac{2}{(2x+4)ln(2)}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor Guadalupe » Sex Jul 20, 2012 21:32

Cheguei a esse resultado usando a regra de derivação de logaritmos: (log a (u))' = u'/ulna.
Com mudança de base, assim como você falou, cheguei ao mesmo resultado: 2/(2x+4)ln2.

Só gostaria de saber qual o procedimento que o autor utilizou para chegar ao resultado 2/2x+4.log2(e) a partir do resultado que achei: 2/(2x+4)ln2.

Desde já, agradeço.
Guadalupe
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 20, 2012 17:05
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada de um Logaritmo.

Mensagempor DanielFerreira » Sex Jul 20, 2012 22:40

y = log_2 (2x + 4)

Passando p/ a base e como sugerido pelo Santhiago.

y = \frac{log_e (2x + 4)}{log_e 2} ====> y = \frac{ln (2x + 4)}{ln 2}

Tomemos como exemplo y = ln u sua derivada é dada por y' = \frac{1}{u}u'

Segue que

y' = \frac{\frac{1}{2x + 4} . 2 \times ln 2 - ln(2x + 4) . \frac{1}{2} \times 0}{ln^22}


y' = \frac{\frac{2ln2}{2x + 4}}{ln^22}


y' = \frac{\frac{2}{2x + 4}}{ln2}


y' = \frac{2}{(2x + 4)ln2}

passando para a base 2

y' = \frac{2}{(2x + 4)log_e 2}


y' = \frac{2}{(2x + 4)\frac{log_2 2}{log_2 e}}


y' = \frac{2}{\frac{2x + 4}{log_2 e}}


y' = \frac{2}{2x + 4} \times log_2 e


Penso que a mudança de base tenha se tornado mais trabalhosa, veja o porquê:

y = log_a u ====> y' = \frac{u'}{u}log_a e


y = log_2 (2x + 4) ====> y' = \frac{2}{(2x + 4)} \times log_2 e

Espero também ter ajudado
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Derivada de um Logaritmo.

Mensagempor fraol » Sáb Jul 21, 2012 00:12

Boa noite,

Guadalupe escreveu:Cheguei a esse resultado usando a regra de derivação de logaritmos: (log a (u))' = u'/ulna.
Com mudança de base, assim como você falou, cheguei ao mesmo resultado: 2/(2x+4)ln2.

Só gostaria de saber qual o procedimento que o autor utilizou para chegar ao resultado 2/2x+4.log2(e) a partir do resultado que achei: 2/(2x+4)ln2.

Desde já, agradeço.


Mudando ln 2 para a base 2 você fica com: ln 2 = \frac{log_{2}{2}}{log_{2}{e}} = \frac{1}{log_{2}{e}}

Daí segue que\frac{1}{ln2} = log_{2}{e} .



.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Derivada de um Logaritmo.

Mensagempor e8group » Sáb Jul 21, 2012 11:34

danjr5 ,não sabia da propriedade para logaritmos não naturais.Acredito que pela definição de derivadas consigo provar a propriedade para logaritmos genéricos tais como [tex] log_a (b) [\tex] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.