• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Derivada Direcional.

[Derivada] Derivada Direcional.

Mensagempor GabrielG » Dom Jul 15, 2012 21:20

Olá, preciso resolver uma lista com alguns exercícios, ja fiz quase todos mais fiquei enroscado em um deles que não consigo resolver de jeito nenhum. O exercício é este:

Seja f(x,y)=x*arctan{x/y}. Calcule df/du (1,1) onde u aponta na direção e sentido de maior decrescimento de f no ponto (1,1).

Desculpem por algum erro, é meu primeiro post por aqui. Valeu.
GabrielG
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jul 15, 2012 21:08
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Derivada Direcional.

Mensagempor Russman » Dom Jul 15, 2012 23:35

A derivada direcional de uma função f(x,y) na direção e sentido de um vetor \overrightarrow{u} unitário é dada por:

D_{\overrightarrow{u}}f(x,y)=\overrightarrow{\bigtriangledown }f(x,y)\cdot \overrightarrow{u}.

A direção e sentido de maior evolução da funão em dado ponto é a direção e sentido do proprio vetor \overrightarrow{\bigtriangledown }f(x,y).

Assim,

D_{\overrightarrow{\overrightarrow{\bigtriangledown }f(x,y)}}f(x,y)=\overrightarrow{\bigtriangledown }f(x,y)\cdot \frac{\overrightarrow{\bigtriangledown }f(x,y)}{\left \|  \overrightarrow{\bigtriangledown }f(x,y)\right \|}=\left \|  \overrightarrow{\bigtriangledown }f(x,y)\right \|.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Derivada] Derivada Direcional.

Mensagempor GabrielG » Dom Jul 15, 2012 23:57

Russman escreveu:A derivada direcional de uma função f(x,y) na direção e sentido de um vetor \overrightarrow{u} unitário é dada por:

D_{\overrightarrow{u}}f(x,y)=\overrightarrow{\bigtriangledown }f(x,y)\cdot \overrightarrow{u}.

A direção e sentido de maior evolução da funão em dado ponto é a direção e sentido do proprio vetor \overrightarrow{\bigtriangledown }f(x,y).

Assim,

D_{\overrightarrow{\overrightarrow{\bigtriangledown }f(x,y)}}f(x,y)=\overrightarrow{\bigtriangledown }f(x,y)\cdot \frac{\overrightarrow{\bigtriangledown }f(x,y)}{\left \|  \overrightarrow{\bigtriangledown }f(x,y)\right \|}=\left \|  \overrightarrow{\bigtriangledown }f(x,y)\right \|.


Sim sim, essa "formula" da derivada direcional eu ja conheço. Mais não sei como aplica-la neste caso. Tenho que fazer a norma do gradiente no ponto (1,1) ? To meio perdido ainda. *-)
GabrielG
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jul 15, 2012 21:08
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Derivada Direcional.

Mensagempor Russman » Seg Jul 16, 2012 00:04

Isto!

Eu já fiz toda simplificação. Só calcular a norma do gradiente de f no ponto pois, nesse caso, a derivada direcional e o mesmo se confundem.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)