• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raizes de equação de grau>=3

Raizes de equação de grau>=3

Mensagempor citadp » Qua Jun 20, 2012 09:32

Tenho também uma dúvida acerca de raízes.
Tenho uma função x^6+3x^5 = -1

Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [

Ora, o que eu costumo fazer é derivar, o que me dá 6x^5+ 15x^4

Como não consigo calcular assim os zeros, simplifiquei : x^3(x^2 + 15x) = 0 o que me dá um zero em x=-15, o que supostamente me ensinaram foi que se a derivada não tiver zeros existe apenas um zero na função.

Assim a derivada tem zeros.

Alguém me pode ajudar a resolver isto ?
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Raizes de equação de grau>=3

Mensagempor Russman » Qua Jun 20, 2012 10:47

citadp escreveu:Tenho uma função equação x^6+3x^5 = -1

Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [


Veja que para existir tal raíz a função f(x) = x^{6}+3x^{5} +1 deve mudar de sinal entre (-\infty,-1) e (0,+\infty)

Então, para isto, basta selecionar um valor de x_{1} \in (-\infty,-1) e outro de x_{2} \in (0,+\infty) e mostrar que f(x_{1}) <0 e f(x_{2})>0.

Para x_{1} eu escolho, por exemplo x_{1} = -2. Assim,

f(-2) = (-2)^{6} + 3.(-2)^{5} + 1 = -31 <0.

Para x_{2} eu escolho, por exemplo x_{2} = 1. Assim,


f(1/2) = (1)^{6} + 3.(1)^{5} + 1 = 5 >0.

Logo, concluímos que existe uma raíz no intervalo (-1, 0).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Raizes de equação de grau>=3

Mensagempor citadp » Qua Jun 20, 2012 10:54

Então não é necessário fazer a derivada da função neste caso ?

E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Raizes de equação de grau>=3

Mensagempor Russman » Sex Jul 06, 2012 15:49

citadp escreveu:Então não é necessário fazer a derivada da função neste caso ?


Não! Se a função é contínua então na troca de sinais ela precisa necessariamente passar pelo zero.
citadp escreveu:E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?


Depende da função que você estudará!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59