• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Máximo e Mínimo] - Teoria?

[Máximo e Mínimo] - Teoria?

Mensagempor allakyhero » Dom Jul 01, 2012 13:38

Bom dia :D

Questões:
49-69. Encontre os valores máximo e mínimo aboslutos de f no intervalo dado.

Por exemplo questão .50 do livro.
f(x) = x³ - 3x + 1, [0 , 3]
f(1) = 1³ - 3.1 + 1
f(1) = -1
Aqui seria "Mínimo absoluto"?

f(3) = 3³ - 3 . 3 + 1
f(3) = 27 - 9 + 1
f(3) = 19
Aqui seria "Máximo absoluto"?
-----------------------------------------------------------------------------

Por exemplo: Usei assim pra achar o "Mínimo absoluto"
Questão 52.

f(x) = 18x + 15x² - 4x³, [-3 , 2]
f(x) = 18 + 30x - 12x²
f(x) = 18 + 30.(-1) - 12.(-1)²
f(x) = 0
Então, Menor abosluto: (x = -1)
E pra achar o máximo absoluto mais rápido?

-----------------------------------------------------------------------------
Dúvidas:
1. Como faço pra achar o ponto critico?
2. Como faço pra achar a "valor médio"?
3. Como faço pra achar diretamente o "maximo" e o "minimo"? Seria uma teoria isso?
-----------------------------------------------------------------------------

Agradeço pela atenção de todos.
Abraço! :-P
allakyhero
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 30, 2012 12:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Máximo e Mínimo] - Teoria?

Mensagempor e8group » Dom Jul 01, 2012 15:30

allakyhero ,tudo bem ? sem olhar as suas soluções ,indo direto nas suas dúvidas . Vamos lá !

allakyhero escreveu:Dúvidas:
1. Como faço pra achar o ponto critico?
2. Como faço pra achar a "valor médio"?
3. Como faço pra achar diretamente o "maximo" e o "minimo"? Seria uma teoria isso?


1 - Seja j uma função ,dizemos que x é ponto crítico de j se a primeira derivada de j (j') é nula ou não existe(j(x) = 0 , \nexists x tal que j(x) = 0) .

2 - Seja j contínua em [a,b] derivável em (a,b) com (f(a)=f(b) =0) ,então existe c \in (a,b) tal que j'(c) =0 .

3- Lembrando que a primeira derivada é o coeficiente angular da reta tangente a uma curva,Para máx. e mín. a primeira derivada é nula .Para o caso acima (2) , temos :

Ponto de máx(global) em [a,b] de j se j(x_0) \geq j(x) \forall x \in [a,b] e

Ponto de mín .(global) em [a,b] de j se j(x_0) \leq j(x)\forall x\in [a,b] ....

Qual livro de cálculo você utiliza ?

Dica pessoal :

Recomendo este livro (http://www.labma.ufrj.br/~mcabral/texto ... 4-V2-2.pdf) , particularmente gosto muito dele ,é muito didático e tem muitos exemplos com soluções ,mas enfim seja qual o livro que utilizara ,tente resolver cada exemplo do livro sem olhar a resposta ,tente chegar nela .Somente depois deste processo e de muita leitura ,comece a resolver os exercícios .

Obs.: É uma dica pessoal não genérica .abraços ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Máximo e Mínimo] - Teoria?

Mensagempor allakyhero » Dom Jul 01, 2012 15:46

Agradeço, mais realmente isso pra mim é complexo .-.'
allakyhero
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 30, 2012 12:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Máximo e Mínimo] - Teoria?

Mensagempor e8group » Dom Jul 01, 2012 16:18

allakyhero escreveu:Agradeço, mais realmente isso pra mim é complexo .
haha Fui um pouco além .A caráter de ens.Médio você pode obter os extremos da parábola pelo x do vértice e y do vértice .(http://pt.wikipedia.org/wiki/Fun%C3%A7% ... .C3.A1tica)

A teoria diz que para as funções quadráticas da forma(ax^2+bx +c ) onde a,b,c são constantes com a \neq 0 os extremos pode ser obtidos por x_{vert.} =  \frac{-b}{2a} e y_{vert.} = \frac{-\Delta}{4a} .

Extremos é máximos ou mínimos ,cabe ao valor de a . se a < 0 temos um ponto de máximo caso contrário temos um ponto de mínimo .

Espero que ajude !!
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: