• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números reais

Números reais

Mensagempor citadp » Dom Jun 24, 2012 16:02

Tenho uma dúvida neste exercicio:


F(x)=
{Ax , se x < 1
{Bx^2+3x+2 , se x >= 1

Calcule os números reais de A e B de modo de f seja diferenciavel no ponto 1.

o que faço aqui é que para ser difereciavel , tem que ser continua,

fiz limite para 1+ deu-me que é igual a B + 5, logo limite para 1- tem que dar igual, para ser diferenciavel a derivada da esquerda e direita no ponto tem que ser iguais, o que me dá é que o B = -3/2 e o A=0, o que acho muito estranho o A dar resultado zero. já fiz mlilhares de vezes e dá sempre o mesmo, agradecia que alguém me ajudasse.
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Números reais

Mensagempor e8group » Dom Jun 24, 2012 19:22

citadp escreveu:Tenho uma dúvida neste exercicio:


F(x)=
{Ax , se x < 1
{Bx^2+3x+2 , se x >= 1

Calcule os números reais de A e B de modo de f seja diferenciavel no ponto 1.

o que faço aqui é que para ser difereciavel , tem que ser continua,

fiz limite para 1+ deu-me que é igual a B + 5, logo limite para 1- tem que dar igual, para ser diferenciavel a derivada da esquerda e direita no ponto tem que ser iguais, o que me dá é que o B = -3/2 e o A=0, o que acho muito estranho o A dar resultado zero. já fiz mlilhares de vezes e dá sempre o mesmo, agradecia que alguém me ajudasse.


f(x) = \begin{cases} ax  ; x < 1 \\
bx^2+3x +2 ; x \geq 1\end{cases} .

note que ,

\lim_{x\to 1 } f(x) = f(1) , ou seja :

a= b+ 5 .

Para existir a derivada em x = 1 , temos que as derivadas laterais são iguais .Daí ,

a = 2b +3 ,lembrando que a= b+ 5 ,temos :

b+ 5 = 2b +3 \therefore b = 2 \Longrightarrow a = b + 5 = 7
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}