• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular intervalos de crescimento e decrescimento da função

Calcular intervalos de crescimento e decrescimento da função

Mensagempor Eduardooitavo » Sáb Jun 09, 2012 18:06

Nao estou conseguindo calcular os intervalos desta funcao x2/x2 - 4, ja achei a derivada da funcao.

obs: x2 = x ao quadrado

A derivada eh -8x/ [(x+2)(x-2)] ao quadrado, depois disso nao sei mais o que fazer. Preciso acha os pontos maximos e minimos.

Se alguem conseguir agradeco.
Eduardooitavo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 09, 2012 18:00
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Calcular intervalos de crescimento e decrescimento da fu

Mensagempor MarceloFantini » Sáb Jun 09, 2012 19:32

Você tem a função f(x) = \frac{x^2}{x^2 -4}, logo \frac{\textrm{d}f}{\textrm{d}x} = \frac{-8x}{(x^2 -4)^2}.

Para encontrar os pontos de máximo e mínimo devemos fazer \frac{\textrm{d}f}{\textrm{d}x} = 0, portanto \frac{-8x}{(x^2-4)^2} = 0. De cara já sabemos que x \neq 2 e x \neq -2 devido ao denominador. Quais são as outras possíveis raízes?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}