• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Exponencial

Limite com Exponencial

Mensagempor Thyago Quimica » Qui Mai 24, 2012 17:44

1) \lim_{x\rightarrow+\infty}\left[{2}^{x}-{3}^{x} \right]

2) \lim_{x\rightarrow+\infty}\frac{1-{2}^{x}}{1-{3}^{x}}

tendei fazer pelas propriedades mais o meu resultado nao bate, que deveria ser -\infty e 0
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Limite com Exponencial

Mensagempor LuizAquino » Qui Mai 24, 2012 22:03

Thyago Quimica escreveu:tendei fazer pelas propriedades mais o meu resultado nao bate, que deveria ser -\infty e 0


Thyago Quimica escreveu:1) \lim_{x\rightarrow+\infty}\left[{2}^{x}-{3}^{x} \right]


Colocando 2^x em evidência, note que:

\lim_{x\to +\infty} {2}^{x}-{3}^{x} = \lim_{x\to +\infty} 2^x\left(1 - \frac{3^x}{2^x}\right)

= \lim_{x\to +\infty} 2^x\left[1 - \left(\frac{3}{2}\right)^x\right]

= (+\infty)\cdot (1 - \infty)

= (+\infty)\cdot (- \infty)

= -\infty

Thyago Quimica escreveu:2) \lim_{x\rightarrow+\infty}\frac{1-{2}^{x}}{1-{3}^{x}}


Dividindo o numerador e o denominador por 2^x , note que:

\lim_{x\to+\infty}\frac{1-{2}^{x}}{1-{3}^{x}} = \lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \frac{3^{x}}{2^x}}

= \lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \left(\frac{3}{2}\right)^x}

Agora note que:

\lim_{x\to+\infty} \frac{1}{2^x} - 1 =  0 - 1 = -1

\lim_{x\to+\infty} \frac{1}{2^x} - \left(\frac{3}{2}\right)^x =  0 - \infty = -\infty

Portanto, temos que:

\lim_{x\to+\infty}\frac{\frac{1}{2^x} - 1}{\frac{1}{2^x} - \left(\frac{3}{2}\right)^x} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.