• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite e Continuidade

Limite e Continuidade

Mensagempor Thyago Quimica » Seg Mai 21, 2012 14:11

1) Determine L para que a funçao dada seja continua
f(x)=
\begin{pmatrix}
   \sqrt{x}-\sqrt{5} / \sqrt{x + 5}-\sqrt{10}\,\,\,se\, x\neq 5  \\          
   L\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,se\, x = 5
\end{pmatrix}

Em\,P=5



2)A função é continua em 0
f(x)= 
\begin{pmatrix}
   {x}^{2}+x/x + 1\,\:\;\!   se\,x\neq-1  \\ 
   2\:se\;x=\!-1 
\end{pmatrix}

Não consegui chegar ao resultado correto, alguem pode ajudar ?
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Limite e Continuidade

Mensagempor LuizAquino » Ter Mai 22, 2012 19:22

Thyago Quimica escreveu:1) Determine L para que a funçao dada seja continua
f(x)=
\begin{pmatrix}
   \sqrt{x}-\sqrt{5} / \sqrt{x + 5}-\sqrt{10}\,\,\,se\, x\neq 5  \\          
   L\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,se\, x = 5
\end{pmatrix}

Em\,P=5


O que você escreveu é equivalente a:

f(x) = \begin{cases}\sqrt{x}-\dfrac{\sqrt{5}}{\sqrt{x+5}}-\sqrt{10},\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Mas ao que parece a função original seria:

f(x) = \begin{cases}\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}},\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Nesse caso, você deveria ter escrito algo como:

f(x) = \begin{cases}\left(\sqrt{x}-\sqrt{5}\right)/\left(\sqrt{x+5}-\sqrt{10}\right),\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Note a importância do uso adequado dos parênteses!

Falando agora sobre a resolução do exercício, para que a função seja contínua em x = 5, precisamos que ocorra:

\lim_{x\to 5}f(x) = f(5)

Pela definição da função, temos que f(5) = L.

Desejamos então que:

\lim_{x\to 5}\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = L

Multiplicando o numerador e o denominador da fração dentro do limite pela expressão \left(\sqrt{x+5}+\sqrt{10}\right), temos que:

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{\left(\sqrt{x+5}-\sqrt{10}\right)\left(\sqrt{x+5}+\sqrt{10}\right)} = L

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{(x+5) - 10} = L

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{x- 5} = L

Agora multiplique o numerador e o denominador por \sqrt{x}+\sqrt{5}. Temos que:

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)\left(\sqrt{x}+\sqrt{5}\right)}{(x- 5)\left(\sqrt{x}+\sqrt{5}\right)} = L

\lim_{x\to 5}\frac{(x-5)\left(\sqrt{x+5}+\sqrt{10}\right)}{(x - 5)\left(\sqrt{x}+\sqrt{5}\right)} = L

Agora tente concluir o exercício.

Thyago Quimica escreveu:2)A função é continua em 0
f(x)= \begin{pmatrix} {x}^{2}+x/x + 1\,\:\;\! se\,x\neq-1 \\ 2\:se\;x=\!-1 \end{pmatrix}


Novamente: tome cuidado com o uso dos parênteses!

Ao que parece, a função original seria:

f(x) = \begin{cases}\dfrac{x^2+x}{x+1},\textrm{ se } x \neq -1 \\ \\ 2,\textrm{ se }x = -1\end{cases}

Para que ela seja contínua em x = 0, basta que ocorra:

\lim_{x\to 0} f(x) = f(0)

Agora calcule separadamente o valor de \lim_{x\to 0} f(x) e o valor de f(0). Se os resultados forem os mesmos, então a função é contínua em x = 0.

Tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}