• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite e Continuidade

Limite e Continuidade

Mensagempor Thyago Quimica » Seg Mai 21, 2012 14:11

1) Determine L para que a funçao dada seja continua
f(x)=
\begin{pmatrix}
   \sqrt{x}-\sqrt{5} / \sqrt{x + 5}-\sqrt{10}\,\,\,se\, x\neq 5  \\          
   L\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,se\, x = 5
\end{pmatrix}

Em\,P=5



2)A função é continua em 0
f(x)= 
\begin{pmatrix}
   {x}^{2}+x/x + 1\,\:\;\!   se\,x\neq-1  \\ 
   2\:se\;x=\!-1 
\end{pmatrix}

Não consegui chegar ao resultado correto, alguem pode ajudar ?
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Limite e Continuidade

Mensagempor LuizAquino » Ter Mai 22, 2012 19:22

Thyago Quimica escreveu:1) Determine L para que a funçao dada seja continua
f(x)=
\begin{pmatrix}
   \sqrt{x}-\sqrt{5} / \sqrt{x + 5}-\sqrt{10}\,\,\,se\, x\neq 5  \\          
   L\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,se\, x = 5
\end{pmatrix}

Em\,P=5


O que você escreveu é equivalente a:

f(x) = \begin{cases}\sqrt{x}-\dfrac{\sqrt{5}}{\sqrt{x+5}}-\sqrt{10},\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Mas ao que parece a função original seria:

f(x) = \begin{cases}\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}},\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Nesse caso, você deveria ter escrito algo como:

f(x) = \begin{cases}\left(\sqrt{x}-\sqrt{5}\right)/\left(\sqrt{x+5}-\sqrt{10}\right),\textrm{ se } x \neq 5 \\ \\ L,\textrm{ se }x = 5\end{cases}

Note a importância do uso adequado dos parênteses!

Falando agora sobre a resolução do exercício, para que a função seja contínua em x = 5, precisamos que ocorra:

\lim_{x\to 5}f(x) = f(5)

Pela definição da função, temos que f(5) = L.

Desejamos então que:

\lim_{x\to 5}\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = L

Multiplicando o numerador e o denominador da fração dentro do limite pela expressão \left(\sqrt{x+5}+\sqrt{10}\right), temos que:

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{\left(\sqrt{x+5}-\sqrt{10}\right)\left(\sqrt{x+5}+\sqrt{10}\right)} = L

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{(x+5) - 10} = L

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)}{x- 5} = L

Agora multiplique o numerador e o denominador por \sqrt{x}+\sqrt{5}. Temos que:

\lim_{x\to 5}\frac{\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x+5}+\sqrt{10}\right)\left(\sqrt{x}+\sqrt{5}\right)}{(x- 5)\left(\sqrt{x}+\sqrt{5}\right)} = L

\lim_{x\to 5}\frac{(x-5)\left(\sqrt{x+5}+\sqrt{10}\right)}{(x - 5)\left(\sqrt{x}+\sqrt{5}\right)} = L

Agora tente concluir o exercício.

Thyago Quimica escreveu:2)A função é continua em 0
f(x)= \begin{pmatrix} {x}^{2}+x/x + 1\,\:\;\! se\,x\neq-1 \\ 2\:se\;x=\!-1 \end{pmatrix}


Novamente: tome cuidado com o uso dos parênteses!

Ao que parece, a função original seria:

f(x) = \begin{cases}\dfrac{x^2+x}{x+1},\textrm{ se } x \neq -1 \\ \\ 2,\textrm{ se }x = -1\end{cases}

Para que ela seja contínua em x = 0, basta que ocorra:

\lim_{x\to 0} f(x) = f(0)

Agora calcule separadamente o valor de \lim_{x\to 0} f(x) e o valor de f(0). Se os resultados forem os mesmos, então a função é contínua em x = 0.

Tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59