por emsbp » Qua Mai 02, 2012 18:28
O exercício é o seguinte:
Determine as coordenadas do ponto cuja tangente à curva
nesse ponto é paralela à secante que passa pelos pontos da curva cujas abcissas são os extremos do intervalo ![\left[-2, 1 \right] \left[-2, 1 \right]](/latexrender/pictures/88d0463b3c1a50ac9cb82cde912fefc0.png)
.
Passo a explicar a minha resolução:
Primeiro determinei o declive da secante à curva. Para tal, achei as imagens dos pontos da secante (designei por A e por B)
Para A (-2, y1):
y1 = -2 -

= 6
Para B(1, y2)
y2= 1-1=0
Vetor AB= B-A=(1,0)-(-2,6)= (3,-6), donde m (declive da secante) = -2. Assim, como é paralela à tangente, o declive da tangente também é -2.
Logo, a reta tangente terá de equação y=-2x+b.
A minha dúvida reside aqui: como vou determinar b? Pois não é dado nenhum ponto que pertença à tangente, a não ser o próprio ponto que queremos determinar.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
por LuizAquino » Qua Mai 02, 2012 18:43
emsbp escreveu:O exercício é o seguinte:
Determine as coordenadas do ponto cuja tangente à curva
nesse ponto é paralela à secante que passa pelos pontos da curva cujas abcissas são os extremos do intervalo ![\left[-2, 1 \right] \left[-2, 1 \right]](/latexrender/pictures/88d0463b3c1a50ac9cb82cde912fefc0.png)
.
Passo a explicar a minha resolução:
Primeiro determinei o declive da secante à curva. Para tal, achei as imagens dos pontos da secante (designei por A e por B)
Para A (-2, y1):
y1 = -2 -

= 6
Para B(1, y2)
y2= 1-1=0
Vetor AB= B-A=(1,0)-(-2,6)= (3,-6), donde m (declive da secante) = -2. Assim, como é paralela à tangente, o declive da tangente também é -2.
Logo, a reta tangente terá de equação y=-2x+b.
A minha dúvida reside aqui: como vou determinar b? Pois não é dado nenhum ponto que pertença à tangente, a não ser o próprio ponto que queremos determinar.
Você não precisa determinar b.
Você já sabe que a inclinação (declividade) da reta tangente é -2. Basta então resolver a equação y' = -2. Ou seja, resolver a equação 1 - 3x² = -2. Com isso você encontra a abscissa dos pontos de tangência nos quais a inclinação da reta tangente é -2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por emsbp » Qui Mai 03, 2012 11:38
Ok. Muito obrigado.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8551 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Reta tangente
por Tatu+bola » Sex Nov 29, 2013 09:06
- 1 Respostas
- 1425 Exibições
- Última mensagem por Bravim

Sex Nov 29, 2013 21:02
Cálculo: Limites, Derivadas e Integrais
-
- Derivada.Reta tangente á curva
por Blame » Ter Jun 18, 2013 18:32
- 0 Respostas
- 1315 Exibições
- Última mensagem por Blame

Ter Jun 18, 2013 18:32
Cálculo: Limites, Derivadas e Integrais
-
- Derivada reta tangente ao gráfico
por Carolminera » Dom Jul 06, 2014 16:53
- 1 Respostas
- 2521 Exibições
- Última mensagem por e8group

Dom Jul 06, 2014 20:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivada reta tangente ao gráfico
por Carolminera » Qua Jul 23, 2014 11:33
- 1 Respostas
- 1667 Exibições
- Última mensagem por Russman

Qua Jul 23, 2014 21:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.