por samra » Dom Abr 22, 2012 19:52
Nesse exercício, estimaremos a taxa segundo o qual a renda pessoal total está subindo na área metropolitana na cidade de Richmond-Petersburg, Virginia. Em julho de 1999, a população dessa área era de 961 400, e estava crescendo aproximadamente em 9 200 pessoas por ano. O rendimento anual médio era de $ 30 593 per capita, e essa média crescia em torno de $ 1 400 por ano (bem acima da média nacional, de cerca de $ 1 225 anuais). Use a regra do produto e os dados aqui forneecidos para estimar a taxa segundo a qual a renda pessoal total estava crescendo na cidade em julho de 1999.
Não sei como fazê-lo, ajuda por favor?
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
-
samra
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sex Jan 27, 2012 11:31
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informatica
- Andamento: formado
por LuizAquino » Ter Abr 24, 2012 13:42
samra escreveu:Não sei como fazê-lo, ajuda por favor?
Basta interpretar o texto.
samra escreveu: Em julho de 1999, a população dessa área era de 961 400, e estava crescendo aproximadamente em 9 200 pessoas por ano.
Seja p(x) a população na data x. Considere que a data "julho de 1999" corresponde a x0. Temos que p(x0) = 961.400. Além disso, temos que p'(x0) = 9.200/12.
samra escreveu:O rendimento anual médio era de $ 30 593 per capita, e essa média crescia em torno de $ 1 400 por ano
Seja r(x) o rendimento anual médio per capita na data x. Temos que r(x0) = 30.593. Além disso, temos que r'(x0) = 1.400/12.
samra escreveu:Use a regra do produto e os dados aqui fornecidos para estimar a taxa segundo a qual a renda pessoal total estava crescendo na cidade em julho de 1999.
Seja t(x) a renda pessoal total na data x. Note que t(x) = p(x)r(x). Desejamos então calcular t'(x0).
Agora basta usar os dados anteriores e aplicar a regra do produto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] regra do produto, da cadeia e trigonometria
por souzalucasr » Sáb Mai 05, 2012 19:33
- 2 Respostas
- 2333 Exibições
- Última mensagem por souzalucasr

Sáb Mai 05, 2012 20:16
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]Regra da Cadeia, me ajudem nesse problema.
por marcosmuscul » Seg Abr 01, 2013 20:22
- 2 Respostas
- 1555 Exibições
- Última mensagem por e8group

Seg Abr 01, 2013 21:12
Cálculo: Limites, Derivadas e Integrais
-
- [Regra de Três] Exercício envolvendo torneiras
por matheus_frs1 » Ter Mai 06, 2014 10:26
- 3 Respostas
- 2968 Exibições
- Última mensagem por Russman

Sáb Mai 10, 2014 14:26
Aritmética
-
- [Regra da Cadeia] Produto de funções
por Ronaldobb » Sex Out 12, 2012 19:05
- 2 Respostas
- 1358 Exibições
- Última mensagem por DanielFerreira

Sex Out 12, 2012 20:04
Cálculo: Limites, Derivadas e Integrais
-
- Regra da cadeia, potencia, produto, seno, cosseno
por 0 kelvin » Sex Abr 15, 2011 06:50
- 1 Respostas
- 2488 Exibições
- Última mensagem por LuizAquino

Sex Abr 15, 2011 09:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.