• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de derivada, envolvendo regra do produto

Problema de derivada, envolvendo regra do produto

Mensagempor samra » Dom Abr 22, 2012 19:52

Nesse exercício, estimaremos a taxa segundo o qual a renda pessoal total está subindo na área metropolitana na cidade de Richmond-Petersburg, Virginia. Em julho de 1999, a população dessa área era de 961 400, e estava crescendo aproximadamente em 9 200 pessoas por ano. O rendimento anual médio era de $ 30 593 per capita, e essa média crescia em torno de $ 1 400 por ano (bem acima da média nacional, de cerca de $ 1 225 anuais). Use a regra do produto e os dados aqui forneecidos para estimar a taxa segundo a qual a renda pessoal total estava crescendo na cidade em julho de 1999.

Não sei como fazê-lo, ajuda por favor?
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Problema de derivada, envolvendo regra do produto

Mensagempor LuizAquino » Ter Abr 24, 2012 13:42

samra escreveu:Não sei como fazê-lo, ajuda por favor?


Basta interpretar o texto.

samra escreveu: Em julho de 1999, a população dessa área era de 961 400, e estava crescendo aproximadamente em 9 200 pessoas por ano.


Seja p(x) a população na data x. Considere que a data "julho de 1999" corresponde a x0. Temos que p(x0) = 961.400. Além disso, temos que p'(x0) = 9.200/12.

samra escreveu:O rendimento anual médio era de $ 30 593 per capita, e essa média crescia em torno de $ 1 400 por ano


Seja r(x) o rendimento anual médio per capita na data x. Temos que r(x0) = 30.593. Além disso, temos que r'(x0) = 1.400/12.

samra escreveu:Use a regra do produto e os dados aqui fornecidos para estimar a taxa segundo a qual a renda pessoal total estava crescendo na cidade em julho de 1999.


Seja t(x) a renda pessoal total na data x. Note que t(x) = p(x)r(x). Desejamos então calcular t'(x0).

Agora basta usar os dados anteriores e aplicar a regra do produto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}