• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo III] - Teorema de Stokes

[Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 16:08

Calcule:
\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz, onde C é a curva das equações paramétricas x = a sen (t) ; y = a cos (t); z = a (sen (t) + cos (t), com z maior igual a 0 e menor igual a 2 pi!

Não consegui determinar o parâmetro 'a' e acabei caindo em integral dupla de -y+x+1 dx dy sem conseguir determinar os limites de integração!
Alguém sabe?
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 17:50

Feliperpr escreveu:Calcule:
\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz, onde C é a curva das equações paramétricas x = a sen (t) ; y = a cos (t); z = a (sen (t) + cos (t), com z maior igual a 0 e menor igual a 2 pi!

Não consegui determinar o parâmetro 'a' e acabei caindo em integral dupla de -y+x+1 dx dy sem conseguir determinar os limites de integração!
Alguém sabe?


Para tanto é necessário que você faça com que a integral seja efetuada ao longo dos pontos da curva, isto é, substitua as variáveis x,y e z por suas parametrizações!
Desta forma teremos uma integral dependente unicamente do parametro t que, por isso, pode ser calculada. Veja que

\oint_{}^{} x dx + (x+y) dy + (x+y+z) dz = \oint_{}^{}{a}^{2}(\frac{5}{2}cos(2t) - \frac{1}{2}) dt

utilizando
x = a.sin(t)\rightarrow dx = a.cos(t) dt
y = a.cos(t) \rightarrow dy = -a.sin(t) dt
z = x+y \rightarrow dz = dx + dy \rightarrow a(cos(t) - sin(t)) dt

e as identidades trigonométricas {sin(t)}^{2} = \frac{1}{2}(1 - cos(2t)) e {cos(t)}^{2}-{sin(t)}^{2}=cos(2t).

Agora temos de identificar os limites de integração. Na questão não é o t que varia de 0 a 2pi ?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 18:51

Se t varia de 0 a 2pi, então temos

\int_{0}^{2\pi} \frac{{a}^{2}}{2}(5cos(2t) -1) =\frac{{a}^{2}}{2}(\frac{5}{2}sin(2t) - t)[t=0,t=2\pi
] =-\pi{a}^{2}

Veja que esse processo não é o sugerido pelo Teorema de Stokes! Para tanto é necessário identificar o campo vetorial e a superfície de integração. Fazendo isto você obtem o mesmo resultado. Eu fiz aqui. Se quiser posso postar.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 18:54

Nossa cara, muito obrigado de verdade! :)
Se você puder postar, eu agradeço! Mas já me ajudou muito mesmo! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Russman » Sáb Abr 21, 2012 19:14

O Teorema de Stokes afirma que

I = {\oint_{}^{}}_{C}\overrightarrow{F}\cdot d\overrightarrow{r} = {\int_{}^{}\int_{}^{}}_{S} \bigtriangledown \times \overrightarrow{F}\cdot \overrightarrow{n} dS

que ainda pode ser escrito como

I = {\int_{}^{}\int_{}^{}}_{R} \bigtriangledown \times \overrightarrow{F}\cdot(\pm\bigtriangledown \cdot G ) dR.

Pela integral original vemos que
\overrightarrow{F} = x \widehat{i} + (x+y) \widehat{j}+ (x+y+z)\widehat{k} \Rightarrow \bigtriangledown \times \overrightarrow{F}=\widehat{i}-\widehat{j}+\widehat{k}
G = z - x - y \Rightarrow \bigtriangledown \cdot G = -\widehat{i}-\widehat{j}+\widehat{k}

Como convencionamos orientação positiva para fora da superfície de integração usaremos\bigtriangledown \cdot G =-( -\widehat{i}-\widehat{j}+\widehat{k}). Assim,

I = {\int_{}^{}\int_{}^{}}_{R} \bigtriangledown \times \overrightarrow{F}\cdot(-\bigtriangledown \cdot G ) dR = {\int_{}^{}\int_{}^{}}_{R} (-1) dR = -R = -\pi{a}^{2}.

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Cálculo III] - Teorema de Stokes

Mensagempor Feliperpr » Sáb Abr 21, 2012 19:33

Não tenho nem como te agradecer! Muito obrigado mesmo! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?