• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com problemas de otimização

Ajuda com problemas de otimização

Mensagempor sergioluizom » Ter Abr 17, 2012 16:15

2) Pretende-se estender um cabo de uma usina de força à margem de um rio de 900m de largura até uma fábrica situada do outro lado do rio, 3.000m rio abaixo. O custo para estender um cabo pelo rio é de R$ 5,00 o metro, enquanto que para estendê-lo por terra custa R$ 4,00 o metro. Qual é o percurso mais econômico para o cabo?
Y = \sqrt{900^2 + (3000-x)^2}
C(x,y) = 4x +5Y
c(x) = 4x + 5 \sqrt{900^2 + (3000-x)^2}
c(x) = 4x + 5?....

Estou na dúvida nessa parte como irei realizar a regra da cadeia...
Editado pela última vez por sergioluizom em Ter Abr 17, 2012 16:47, em um total de 3 vezes.
sergioluizom
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Abr 17, 2012 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: Ajuda com problemas de otimização

Mensagempor LuizAquino » Sex Abr 20, 2012 19:10

sergioluizom escreveu:2) Pretende-se estender um cabo de uma usina de força à margem de um rio de 900m de largura até uma fábrica situada do outro lado do rio, 3.000m rio abaixo. O custo para estender um cabo pelo rio é de R$ 5,00 o metro, enquanto que para estendê-lo por terra custa R$ 4,00 o metro. Qual é o percurso mais econômico para o cabo?


sergioluizom escreveu:Y = \sqrt{900^2 + (3000-x)^2}
C(x,y) = 4x +5Y
c(x) = 4x + 5 \sqrt{900^2 + (3000-x)^2}
c(x) = 4x + 5?....

Estou na dúvida nessa parte como irei realizar a regra da cadeia...


Para estudar a resolução de uma derivada (e muito mais), você pode usar um programa. Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução dessa derivada.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    d/dx 4x + 5sqrt(900^2 + (3000-x)^2)
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Espere aparecer o resultado da derivada. Clique então no botão "Show steps" que fica ao lado do resultado.
  5. Pronto! Agora basta estudar o procedimento.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59