• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral iterada e região de integração

Integral iterada e região de integração

Mensagempor Cleyson007 » Qua Abr 18, 2012 10:59

Bom dia a todos!

Calcule a integral iterada \int_{1}^{2}\int_{x}^{2x}\frac{1}{{(x+y)}^{2}}\,dydx e esboce sua região de integração R.

Se alguém puder me ajudar, ficarei grato.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral iterada e região de integração

Mensagempor LuizAquino » Qui Abr 19, 2012 12:08

Cleyson007 escreveu:Bom dia a todos!

Calcule a integral iterada \int_{1}^{2}\int_{x}^{2x}\frac{1}{{(x+y)}^{2}}\,dydx e esboce sua região de integração R.


Para esboçar a região de integração, siga os passos:

1) Marque no eixo x os pontos (1, 0) e (2, 0);
2) Faça o gráfico da função f(x) = x restrita ao intervalo [1, 2];
3) Faça o gráfico da função g(x) = 2x restrita ao intervalo [1, 2];
4) Note que os valores de y estarão "acima" do gráfico de f e "abaixo" do gráfico de g.

Tente seguir cada um dos passos. Se você não conseguir, então poste aqui o seu desenvolvimento até o passo que você foi.

Em relação a resolução da integral, por favor informe até que parte você conseguiu fazer.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral iterada e região de integração

Mensagempor Cleyson007 » Qui Abr 19, 2012 15:58

Boa tarde Aquino!

Apresentando minha resolução:

\int_{1}^{2}\int_{x}^{2x}\frac{1}{(x^{2}+2xy+y^{2})}\,dydx

\int_{1}^{2}\left ( \frac{1}{x^{2}y+2xy^{2}+\frac{y^{3}}{3}} \right )_{x}^{2x}dx

Primeiramente, gostaria de saber se até aqui está correto.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral iterada e região de integração

Mensagempor LuizAquino » Qui Abr 19, 2012 23:15

Cleyson007 escreveu:Apresentando minha resolução:

\int_{1}^{2}\int_{x}^{2x}\frac{1}{(x^{2}+2xy+y^{2})}\,dydx

\int_{1}^{2}\left ( \frac{1}{x^{2}y+2xy^{2}+\frac{y^{3}}{3}} \right )_{x}^{2x}dx

Primeiramente, gostaria de saber se até aqui está correto.


Está errado.

Fazendo a substituição u = x + y e du = dy, temos que:

\int_x^{2x} \frac{1}{(x+y)^2}\, dy = \int_{2x}^{3x} \frac{1}{u^2}\, du = \left[-\frac{1}{u}\right]_{2x}^{3x} = -\frac{1}{3x} + \frac{1}{2x}

Desse modo, temos que:

\int_{1}^{2}\int_{x}^{2x}\frac{1}{{(x+y)}^{2}}\,dy\,dx =  \int_{1}^{2} -\frac{1}{3x} + \frac{1}{2x}\, dx

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?