por thiagodr » Sáb Abr 07, 2012 02:34
Petrobras (2010) cesgranrio
Seja F = (xz, yz, –x²) um campo vetorial em R³ . Analise as declarações a seguir sobre o divergente e o rotacional de F:
I) rot F = (–y, 3x, 0)
II) div F = 2z
III) rot(div F) = 0
Está correto o que se declara em
a) I, apenas.
b) I e II, apenas.
c) I e III, apenas.
d) II e III, apenas.
e) I, II e III.
bem, vemos de cara que I, II estão corretas e a propriedade de que Div F = escalar e Rot ( escalar)=0 a III também está correta, logo a resposta seria a letra: E....
porém a Cesgranrio afirma no seu gabarito, mesmo após os recursos, que a resposta correta é a letra: B. alguém poderia me explicar?
-
thiagodr
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mar 23, 2012 00:52
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: mestrado em Engenharia Nuclear
- Andamento: cursando
por LuizAquino » Sáb Abr 07, 2012 13:33
thiagodr escreveu:Petrobras (2010) cesgranrio
Seja F = (xz, yz, –x²) um campo vetorial em R³ . Analise as declarações a seguir sobre o divergente e o rotacional de F:
I) rot F = (–y, 3x, 0)
II) div F = 2z
III) rot(div F) = 0
Está correto o que se declara em
a) I, apenas.
b) I e II, apenas.
c) I e III, apenas.
d) II e III, apenas.
e) I, II e III.
thiagodr escreveu:bem, vemos de cara que I, II estão corretas e a propriedade de que Div F = escalar e Rot ( escalar)=0 a III também está correta, logo a resposta seria a letra: E....
porém a Cesgranrio afirma no seu gabarito, mesmo após os recursos, que a resposta correta é a letra: B. alguém poderia me explicar?
O operador rotacional está definido apenas sobre campos vetoriais. Ele não está definido sobre campos escalares. Como div(F) nesse caso é um campo escalar, não está definida a operação rot(div(F)). Em outras palavras, não podemos calcular rot(div(F)).
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por thiagodr » Sáb Abr 07, 2012 16:27
Obrigado, deixei passar isso, acontece.
-
thiagodr
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mar 23, 2012 00:52
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: mestrado em Engenharia Nuclear
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divergente, gradiente e rotacional.
por Crisaluno » Qui Set 03, 2015 04:37
- 2 Respostas
- 2231 Exibições
- Última mensagem por Crisaluno

Dom Set 06, 2015 02:08
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo divergente e rotacional
por Fernandobertolaccini » Qui Jun 11, 2015 20:23
- 1 Respostas
- 1238 Exibições
- Última mensagem por adauto martins

Qua Jun 17, 2015 17:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Rotacional
por carvalhothg » Seg Mar 26, 2012 08:54
- 3 Respostas
- 2075 Exibições
- Última mensagem por LuizAquino

Ter Mar 27, 2012 12:51
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em Rotacional
por Lucasoaresf » Sáb Set 13, 2014 16:01
- 0 Respostas
- 888 Exibições
- Última mensagem por Lucasoaresf

Sáb Set 13, 2014 16:01
Cálculo: Limites, Derivadas e Integrais
-
- Dirvergência e rotacional de vetores unitários
por Jhenrique » Sáb Fev 01, 2014 09:54
- 0 Respostas
- 935 Exibições
- Última mensagem por Jhenrique

Sáb Fev 01, 2014 09:54
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.