por jemourafer » Dom Abr 01, 2012 20:23
Como posso resolver essa questão?
" Seja f: R->R uma função tal que: x².cos(x)

f(x)

x.sen(x),
para todo x

. Prove que f é contínua em 0. "
-
jemourafer
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 01, 2012 20:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por NMiguel » Dom Abr 01, 2012 21:00
Para mostrar que

é contínua em

, precisamos mostrar que

Como

, então

, ou seja,

. Daqui podemos concluir que

Da mesma forma, se

, então,

Como

e

, porque ambas são funções contínuas, então

,ou seja,

Daqui podemos concluir que

-
NMiguel
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Ter Abr 19, 2011 17:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema do Confronto
por Claudin » Qua Mai 25, 2011 19:51
- 3 Respostas
- 3305 Exibições
- Última mensagem por LuizAquino

Qua Mai 25, 2011 21:12
Cálculo: Limites, Derivadas e Integrais
-
- Teorema do Confronto
por Cleyson007 » Seg Jul 11, 2011 22:02
- 3 Respostas
- 2297 Exibições
- Última mensagem por MarceloFantini

Ter Jul 12, 2011 09:05
Cálculo: Limites, Derivadas e Integrais
-
- [limite]teorema do confronto
por gabriel feron » Dom Mai 06, 2012 20:25
- 1 Respostas
- 1725 Exibições
- Última mensagem por MarceloFantini

Dom Mai 06, 2012 22:53
Cálculo: Limites, Derivadas e Integrais
-
- LIMITES - Teorema do confronto
por paola-carneiro » Dom Jun 03, 2012 20:53
- 1 Respostas
- 1805 Exibições
- Última mensagem por Fabio Wanderley

Seg Jun 04, 2012 02:45
Cálculo: Limites, Derivadas e Integrais
-
- [Resolução de limite] Teorema do Confronto
por nievag » Ter Mai 13, 2014 00:58
- 1 Respostas
- 2021 Exibições
- Última mensagem por e8group

Ter Mai 13, 2014 10:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.