
Não sei nem por onde começar.
Já estudei teorema dos confrontos.
Agradeço qualquer ajuda


que é um tipo de indeterminação.
que irão surgindo. Ao final, se tudo estiver ok você obterá
como resposta.
para x aproximando-se de 0 por ambos os lados.
Arthur_Bulcao escreveu:Estou com problema ao calcular o limite:
fraol escreveu:Se você aplicar o limite diretamente chegará aque é um tipo de indeterminação.
Minha sugestão é você usar a Regra de L'Hopital. Essa regra diz que![]()







![= \left(\lim_{x\to 0} \dfrac{\textrm{sen}\, x}{x}\right)^3 \left[\lim_{x\to 0} \dfrac{1}{\cos x(1 + \cos x)}\right] = \left(\lim_{x\to 0} \dfrac{\textrm{sen}\, x}{x}\right)^3 \left[\lim_{x\to 0} \dfrac{1}{\cos x(1 + \cos x)}\right]](/latexrender/pictures/0742a984672207912df272076c22a2af.png)
fraol escreveu:No caso de não conhecer a regra sugiro que você pesquise a respeito e, também, assista a aula sobre esse assunto do nosso colega de forum, o professor LuizAquino, que está no endereço http://www.youtube.com/watch?v=-TNbOIad3Oc.

Um caminho é usar a Regra de L'Hospital. Mas nesse caso não é necessário.
Aplicando a definição de tangente, temos que:
Agora fica fácil concluir o exercício.


Arthur_Bulcao escreveu:Puxa, obrigado.
Eu só não uso L'Hospital, porque o professor ainda não deu derivadas, e não aceitaria numa prova, por enquanto.

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.