• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Rotacional

[Derivadas] Rotacional

Mensagempor carvalhothg » Seg Mar 26, 2012 08:54

Pessoal este é um exercicio do livro Gudorrize Calculo III, sera que alguem pode me ajudar a resolver, não estou conseguindo provar que isso é irrotacional.
Como deve ficar a função \varphi para eu deriva-la?

Seja \varphi:\Omega\subset{\Re}^{2}\rightarrow\Re, \Omega aberto de classe C². Verefique que o Campo Vetorial F=\nabla\varphi é irrotacional.
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Derivadas] Rotacional

Mensagempor LuizAquino » Seg Mar 26, 2012 15:01

carvalhothg escreveu:Seja \varphi:\Omega\subset{\Re}^{2}\rightarrow\Re, \Omega aberto de classe C². Verefique que o Campo Vetorial F=\nabla\varphi é irrotacional.


carvalhothg escreveu:Pessoal este é um exercicio do livro Gudorrize Calculo III, sera que alguem pode me ajudar a resolver, não estou conseguindo provar que isso é irrotacional.
Como deve ficar a função \varphi para eu deriva-la?


Basta aplicar as definições.

Um campo vetorial F é irrotacional quando \textrm{rot}\, F = \vec{0} .

Além disso, por definição se F(x,\,y) = (F_1(x,\,y),\, F_2(x,\,y)), então temos que:

\textrm{rot}\, F =
\begin{vmatrix} 
\vec{i} & \vec{j}  & \vec{k} \\ 
\dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & 0 \\ 
F_1 & F_2 & 0
\end{vmatrix}

Também por definição temos que \nabla \varphi = \left(\dfrac{\partial \varphi}{\partial x},\, \dfrac{\partial \varphi}{\partial y}\right) .

Desse modo, basta verificar que \textrm{rot}\, (\nabla \varphi) = \vec{0} .

Aplicando a definição de rotacional, temos que:

\textrm{rot}\, (\nabla \varphi) = 
\begin{vmatrix} 
\vec{i} & \vec{j}  & \vec{k} \\ 
\dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & 0 \\ 
\dfrac{\partial \varphi}{\partial x} & \dfrac{\partial \varphi}{\partial y} & 0
\end{vmatrix}

Agora basta calcular esse determinante e você obterá a resposta desejada. Detalhe: lembre-se que a função \varphi é de classe C².
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas] Rotacional

Mensagempor carvalhothg » Seg Mar 26, 2012 21:57

Aquino,
o que quer dizer quando se diz que a função é de classe C²?

Por acaso quer dizer que ela pertence ao espaço {\Re}^{2}
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Derivadas] Rotacional

Mensagempor LuizAquino » Ter Mar 27, 2012 12:51

carvalhothg escreveu:Aquino,
o que quer dizer quando se diz que a função é de classe C²?

Por acaso quer dizer que ela pertence ao espaço {\Re}^{2}


Vide a página:

Função suave
http://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_suave
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.