• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem... Integral simples

Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 18:56

Olá! Boa Tarde!

Tenho aulas de Calculo Diferencial e Integral on- line e não estou conseguindo entender como calcular uma integral...

Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Quem souber me indicar aulas on- line eu agradeço!
Obrigada desde já, estou tendo bastante dificuldade com elas! rs
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Me ajudem... Integral simples

Mensagempor LuizAquino » Qui Mar 22, 2012 19:06

kika_sanches escreveu:Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Eu presumo que a integral seja:

\int x^3 - 4x^2 + 6x - 3 \, dx

Primeiro, lembre que:

\int x^n \,dx = \dfrac{x^{n+1}}{n+1} + c

Usando essa integral básica, temos que:

\int x^3 - 4x^2 + 6x - 3 \, dx = \int x^3 \,dx - 4\int x^2 \,dx + 6\int x\,dx - 3\int \, dx

= \dfrac{x^{3+1}}{3+1} - 4\dfrac{x^{2+1}}{2+1} + 6 \dfrac{x^{1+1}}{1+1} - 3x + c

= \dfrac{x^{4}}{4} - \dfrac{4x^{3}}{3} + 3x^2 - 3x + c

kika_sanches escreveu:Quem souber me indicar aulas on- line eu agradeço!


Eu gostaria de recomendar o meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 19:30

LuizAquino escreveu:
kika_sanches escreveu:Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Eu presumo que a integral seja:

\int x^3 - 4x^2 + 6x - 3 \, dx

Primeiro, lembre que:

\int x^n \,dx = \dfrac{x^{n+1}}{n+1} + c

Usando essa integral básica, temos que:

\int x^3 - 4x^2 + 6x - 3 \, dx = \int x^3 \,dx - 4\int x^2 \,dx + 6\int x\,dx - 3\int \, dx

= \dfrac{x^{3+1}}{3+1} - 4\dfrac{x^{2+1}}{2+1} + 6 \dfrac{x^{1+1}}{1+1} - 3x + c

= \dfrac{x^{4}}{4} - \dfrac{4x^{3}}{3} + 3x^2 - 3x + c

kika_sanches escreveu:Quem souber me indicar aulas on- line eu agradeço!


Eu gostaria de recomendar o meu canal no YouTube:

http://www.youtube.com/LCMAquino



Muito obrigada!! me ajudou bastante!!
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 19:31

Muito obrigada!! vocês me ajudaram bastante!!
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: