• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem... Integral simples

Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 18:56

Olá! Boa Tarde!

Tenho aulas de Calculo Diferencial e Integral on- line e não estou conseguindo entender como calcular uma integral...

Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Quem souber me indicar aulas on- line eu agradeço!
Obrigada desde já, estou tendo bastante dificuldade com elas! rs
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Me ajudem... Integral simples

Mensagempor LuizAquino » Qui Mar 22, 2012 19:06

kika_sanches escreveu:Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Eu presumo que a integral seja:

\int x^3 - 4x^2 + 6x - 3 \, dx

Primeiro, lembre que:

\int x^n \,dx = \dfrac{x^{n+1}}{n+1} + c

Usando essa integral básica, temos que:

\int x^3 - 4x^2 + 6x - 3 \, dx = \int x^3 \,dx - 4\int x^2 \,dx + 6\int x\,dx - 3\int \, dx

= \dfrac{x^{3+1}}{3+1} - 4\dfrac{x^{2+1}}{2+1} + 6 \dfrac{x^{1+1}}{1+1} - 3x + c

= \dfrac{x^{4}}{4} - \dfrac{4x^{3}}{3} + 3x^2 - 3x + c

kika_sanches escreveu:Quem souber me indicar aulas on- line eu agradeço!


Eu gostaria de recomendar o meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 19:30

LuizAquino escreveu:
kika_sanches escreveu:Alguém poderia me explicar passo a passo uma simples mesmo?

| (x3 - 4x2 + 6x - 3) dx


Eu presumo que a integral seja:

\int x^3 - 4x^2 + 6x - 3 \, dx

Primeiro, lembre que:

\int x^n \,dx = \dfrac{x^{n+1}}{n+1} + c

Usando essa integral básica, temos que:

\int x^3 - 4x^2 + 6x - 3 \, dx = \int x^3 \,dx - 4\int x^2 \,dx + 6\int x\,dx - 3\int \, dx

= \dfrac{x^{3+1}}{3+1} - 4\dfrac{x^{2+1}}{2+1} + 6 \dfrac{x^{1+1}}{1+1} - 3x + c

= \dfrac{x^{4}}{4} - \dfrac{4x^{3}}{3} + 3x^2 - 3x + c

kika_sanches escreveu:Quem souber me indicar aulas on- line eu agradeço!


Eu gostaria de recomendar o meu canal no YouTube:

http://www.youtube.com/LCMAquino



Muito obrigada!! me ajudou bastante!!
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Me ajudem... Integral simples

Mensagempor kika_sanches » Qui Mar 22, 2012 19:31

Muito obrigada!! vocês me ajudaram bastante!!
kika_sanches
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Mar 22, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.