• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidade Limite

Continuidade Limite

Mensagempor CaioLemos » Qui Mar 22, 2012 13:18

Bom dia rapaziada, sou novo no forum e nao sei muito bem como editar as formulas, mas acho que dá para entender:
1-Determine o valor da constante C para que F seja continua em [0,\infty)

f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1
(cx + 5)/{x}^{2} +3 , se\: x =>1
<=,=> Querem dizer maior ou igual

Bom, a minha dúvida é a seguinte: No primeiro momento, eu igualei a f(x) (cx + 5)/{x}^{2} +3 , se\: x =>1
substituio x por 1para achar f(1), porem quando vo fazer o limite da f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1
com X tendendo a 1, caio numa indeterminação 0/0. Minha idéia era achar o valor do limite f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1 com X tendendo a 1 e dps igualar a F(1) para achar o C

Queria saber se o meu pensamento está correto e como sair da indeterminação
Obrigado
CaioLemos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 13:03
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Continuidade Limite

Mensagempor LuizAquino » Qui Mar 22, 2012 15:59

CaioLemos escreveu:1-Determine o valor da constante C para que F seja continua em [0,\infty)

f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1
(cx + 5)/{x}^{2} +3 , se\: x =>1
<=,=> Querem dizer maior ou igual


O que você escreveu é equivalente a:

f(x) = \begin{cases}
\dfrac{x + \sqrt{x}  - 2}{x} - 1,\,\textrm{ se } 0\leq x < 1 \\ \\
\dfrac{cx + 5}{x^2} + 3,\,\textrm{ se } x \geq 1 \\
\end{cases}

Mas eu presumo que a função original seja:

f(x) = \begin{cases}
\dfrac{x + \sqrt{x}  - 2}{x - 1},\,\textrm{ se } 0\leq x < 1 \\ \\
\dfrac{cx + 5}{x^2 + 3},\,\textrm{ se } x \geq 1 \\
\end{cases}

Se você desejava escrever algo assim, você deveria ter usado algo como:

\left(x+\sqrt{x}-2\right)/(x-1), se 0<= x <1
(cx + 5)/\left(x^2 +3\right) , se x =>1

Note a importância do uso adequado dos parênteses!

CaioLemos escreveu:Bom, a minha dúvida é a seguinte: No primeiro momento, eu igualei a f(x) (cx + 5)/{x}^{2} +3 , se\: x =>1
substituio x por 1 para achar f(1), porem quando vo fazer o limite da f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1
com X tendendo a 1, caio numa indeterminação 0/0. Minha idéia era achar o valor do limite f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se  \:x<=x<1 com X tendendo a 1 e dps igualar a F(1) para achar o C

Queria saber se o meu pensamento está correto e como sair da indeterminação


Temos que:

f(1) = \dfrac{c\cdot 1 + 5}{1^2 + 3} = \dfrac{c + 5}{4}

Desejamos determinar c de tal modo que:

\lim_{x\to 1} f(x) = f(1)

Nós já temos que:

\lim_{x\to 1^+} f(x) = f(1)

Falta agora:

\lim_{x\to 1^-} f(x) = f(1)

Desejamos então que:

\lim_{x\to 1^-} \dfrac{x + \sqrt{x}  - 2}{x - 1} =  \dfrac{c + 5}{4}

Há várias formas de resolver esse limite. Uma delas é usando a substituição u = \sqrt{x} . Desse modo, quando x\to 1^- temos que u\to 1^- . Podemos então reescrever esse limite como:

\lim_{u\to 1^-} \dfrac{u^2 + u  - 2}{u^2 - 1} =  \dfrac{c + 5}{4}

Fatorando os polinômios que aparecem no numerador e no denominador, temos que:

\lim_{u\to 1^-} \dfrac{(u + 2)(u - 1)}{(u - 1)(u + 1)} =  \dfrac{c + 5}{4}

\lim_{u\to 1^-} \dfrac{u + 2}{u + 1} =  \dfrac{c + 5}{4}

\dfrac{3}{2} =  \dfrac{c + 5}{4}

Agora basta terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidade Limite

Mensagempor CaioLemos » Qui Mar 22, 2012 17:39

LuizAquino obrigado pela resposta. Estava precisando dessa ajuda, obrigado mesmo!
CaioLemos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 13:03
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?