por carlosmarinio » Qui Nov 03, 2011 15:15
Boa tarde,
alguém poderia me ajudar a resolver tal exercício?
Determine uma família de funções que verifique a equação : x. df/dx + y df/dy = o
Exercício retirado do livro Guidorizzi de cálculo II - pág 226 // regra dacadeia
Obrigado.
-
carlosmarinio
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Nov 03, 2011 15:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnologia
- Andamento: cursando
por joaofonseca » Qui Nov 03, 2011 20:14
A notação que utilizas-te não foi muito explicita.
Vou deduzir que te estar a limitar à diferenciação explicita e que a notação que utilizas-te corresponde á seguinte:

Ou seja:

Para que a expressão anterior seja zero é necessário que

.
Para

basta que u(x) seja uma função contante, já que a derivada de uma constante é zero.Mas se u(x) for uma constante já não estamos perante uma função composta. Na pratica estariamos a calcular a derivada de f(x) num ponto da função f (declive da reta tangente).
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Nov 06, 2011 20:44
carlosmarinio escreveu:Determine uma família de funções que verifique a equação : x. df/dx + y df/dy = 0
Exercício retirado do livro Guidorizzi de cálculo II - pág 226 // regra dacadeia
Na terceira edição desse livro, esse exercício está na página 227. Além disso, os exercícios anteriores a ele que tratam sobre
funções homogêneas podem lhe dar uma pista de como resolvê-lo.
Para resolver o exercício, basta tomar qualquer função

tal que
f seja homogênea de grau 0.
Por exemplo, note que qualquer função do tipo

verifica a equação dada.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ( Regra da Cadeia ) - Cálculo II
por Marimar » Qui Nov 03, 2011 14:38
- 2 Respostas
- 2643 Exibições
- Última mensagem por LuizAquino

Dom Nov 06, 2011 12:32
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada - Regra da cadeia
por Sobreira » Dom Dez 02, 2012 13:23
- 1 Respostas
- 2347 Exibições
- Última mensagem por DanielFerreira

Dom Dez 02, 2012 18:05
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2] Regra da cadeia em derivadas parciais
por NavegantePI » Sáb Jun 25, 2016 18:05
- 0 Respostas
- 1922 Exibições
- Última mensagem por NavegantePI

Sáb Jun 25, 2016 18:05
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de várias variáveis] Problema de regra da cadeia
por Hoteri » Seg Dez 05, 2016 23:56
- 1 Respostas
- 5037 Exibições
- Última mensagem por adauto martins

Qui Dez 08, 2016 09:09
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo II - Regra da Cadeia para várias variáveis
por Guga1981 » Qua Nov 11, 2020 02:22
- 3 Respostas
- 4212 Exibições
- Última mensagem por Guga1981

Dom Nov 22, 2020 05:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.