• Anúncio Global
    Respostas
    Exibições
    Última mensagem

esboço de grafico da funçao

esboço de grafico da funçao

Mensagempor lilianmatos » Qua Nov 02, 2011 21:27

Preciso concluir os 8 passos para esboçar o grafico da funçao: (x^2-1)^3
parei no sexto passo que é determinar a concavidade e os pontos de inflexão, com a derivada 2ª encontrei os seguintes resultados:
x>1 concava para cima e X<-1 concava para baixo. Nao sei se esta certo e o que posso concluir com isso, não tenho ponto de inflexao?
lilianmatos
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 02, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: esboço de grafico da funçao

Mensagempor joaofonseca » Qui Nov 03, 2011 20:38

Mas quais foram os 6 passos?!?! *-)

Comecemos pelo principio:

A função f(x)=(x^2-1)^3 tem dois zeros de multiplicidade 3. São eles -1 e 1.

A derivada de f é f'(x)=6x(x^4-2x^2+1).Quais são os zeros?

6x(x^4-2x^2+1)=0
6x=0 \vee x^4-2x^2+1=0.

Utilizemos um artificio, y=x^2.Fica:

6x=0 \vee y^2-2y+1=0

6x=0 \vee (y-1)^2=0

6x=0 \vee y=1

Voltando a trás com o artificio:

6x=0 \vee x^2=1

x=0 \vee x=1 \vee x=-1

Estes são os zeros da derivada!

A 2º derivada é 30x^4-36x^2+6 Quais os zeros?
Outra vez um artificio.

30y^2-36y+6=0

Dividimos tudo por 6.

5y^2-6y+1=0

(5y-1)(y-1)=0

y=\frac{1}{5} \vee y=1

Voltamos com o artificio a trás:

x^2=\frac{1}{5} \vee x^2=1

x=\sqrt{\frac{1}{5}} \vee x=-{\sqrt\frac{1}{5}} \vee x=-1 \vee x=1

Agora basta estudar o sinal da 2ª derivada.Eu escolhi a máquina grafica:

2_Derivada.jpg
2_Derivada.jpg (12.11 KiB) Exibido 2150 vezes


Como se pode observar, seja analiticamente, seja graficamente, os pontos de inflexão da função f verificam-se nos zeros da 2ª derivada.Pois é aqui que o gráfico da 2ª derivada muda de sinal!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.