• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[exercício de derivadas]

[exercício de derivadas]

Mensagempor elizandro » Dom Out 23, 2011 19:24

estou com dificuldade, n sei como começar a resolver essas derivadas.


y=(3x+1/x²)³


y=\sqrt[2]{3x +1(x-1)²}


y={\left(2x+1 \right)}^{101}\left(5x²-7 \right)
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [exercício de derivadas]

Mensagempor LuizAquino » Seg Out 24, 2011 16:47

Ao invés de "ganhar o peixe", que tal "aprender a pescar"?

Para estudar o passo a passo da resolução, faça o seguinte:

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    derivative of (3x + 1/(x^2))^3
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a derivada ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução.

Para estudar as outras derivadas, basta mudar o segundo passo para:

Código: Selecionar todos
derivative of sqrt(3x + (x-1)^2)


Código: Selecionar todos
derivative of ((2x+1)^101)*(5x^2-7)


Observação
O carácter  que apareceu na sua mensagem deve-se ao fato de você ter usado o atalho do teclado para digitar o quadrado no LaTeX, isto é, você escreveu algo como x². O correto seria usar o comando x^2 dentro do LaTeX. Isso produz como resultado: x^2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.