por joaofonseca » Ter Out 11, 2011 09:38
Seja o seguinte limite:

Pela definição formal de limite eu comecei assim:


Depois resolvi a primeira:



Mas daqui já não sei como fazer para continuar a provar o limite.
Alguém me ajuda?
Obrigado
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por joaofonseca » Qua Out 12, 2011 19:29
Bem..depois de ter pesquisado no YouTube consegui perceber minimamente como funciona a definição formal de limite.
Para o exemplo

Temos a seguinte leitura:
A função pode aproximar-se de 2 tanto quanto quisermos, fazendo x aproximar-se de 2 o suficientemente necessário.
Assim para qualquer número

existe um

positivo, tal que

Assim

. Podemos concluir que a razão entre

e

é 1.O limite existe.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites pela definição formal
por ramoncampos » Ter Nov 01, 2016 21:20
- 4 Respostas
- 9558 Exibições
- Última mensagem por ramoncampos

Sex Nov 04, 2016 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [limites] Propriedades ou definição formal?
por jvabatista » Qua Jun 06, 2012 11:43
- 3 Respostas
- 3437 Exibições
- Última mensagem por adauto martins

Ter Out 14, 2014 20:05
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda com a definição formal de limites
por Gustavooguto » Seg Out 13, 2014 23:49
- 1 Respostas
- 2372 Exibições
- Última mensagem por adauto martins

Ter Out 14, 2014 11:19
Funções
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 6106 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- Limites pela definição
por Fred Pellegrini » Sex Out 28, 2016 18:21
- 1 Respostas
- 4670 Exibições
- Última mensagem por adauto martins

Seg Out 31, 2016 10:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.