• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Vincent Mazzei » Dom Abr 19, 2009 15:47

Dado que
\lim_{x \to a}f(x)=-3  \;\;\;\;   \lim_{x \to a}g(x)=0  \;\;\;\; \lim_{x \to a}h(x)=8
encontre, se existir, o limite. Caso não exista, explique por quê. (só vou colocar uma alternativa)

(d) {\lim_{x \to a}\frac{f(x)}{g(x)} }
Vincent Mazzei
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 19, 2009 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor marciommuniz » Dom Abr 19, 2009 16:06

Pelas propriedades dos limites temos que

\lim_{x\rightarrow{a}_{}} \frac{f(x)}{g(x)} = \frac{\lim_{x\rightarrow{a}}f(x)}{\lim_{x\rightarrow{a}}g(x)} = \frac{-3}{0}

Sabemos que não existe divisão por zero, então o limite não existe!

Bons estudos!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Limites

Mensagempor Vincent Mazzei » Dom Abr 19, 2009 16:38

Mas e se f(x) for x^2-1 e g(x) for x-1 sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?
Vincent Mazzei
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 19, 2009 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Molina » Seg Abr 20, 2009 12:56

Vincent Mazzei escreveu:Mas e se f(x) for x^2-1 e g(x) for x-1 sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?


Vê se é isso que você tinha dúvida:
Considerando as funções que você informou, e fazendo o quociente de uma pela a outra temos que:

\lim_{x\rightarrow1}\frac{f(x)}{g(x)} = \lim_{x\rightarrow1} \frac{x^2-1}{x-1}= \lim_{x\rightarrow1} \frac{(x-1)*(x+1)}{x-1} = \lim_{x\rightarrow1} x+1 = 2

Caso não for sua dúvida, desculpa.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.