OBS: A derivada será representada por chaves:
[f(x)] = f '(x)
![y=\frac{x.\sqrt[]{x^2+1}}{{(x+1)}^{\frac{2}{3}}} y=\frac{x.\sqrt[]{x^2+1}}{{(x+1)}^{\frac{2}{3}}}](/latexrender/pictures/934634323e9d4e260474656e7064aea8.png)
Transformaremos tudo em potências:

Primeiro, devemos utilizar a regra do quociente:
![\left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\left[{(x+1)}^{\frac{2}{3}} \right] - \left[x{(x^2+1)}^{\frac{1}{2}}. \right].{(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}} \left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\left[{(x+1)}^{\frac{2}{3}} \right] - \left[x{(x^2+1)}^{\frac{1}{2}}. \right].{(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}}](/latexrender/pictures/44623b5932901870fa31cc3da3dc843c.png)
Agora, derive o primeiro com a regra da cadeia e o segundo com a regra do produto:
![\left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}.{(x+1)}^{\frac{-1}{3}} - \left(x.\left[{(x^2+1)}^{\frac{1}{2}} \right]+{(x^2+1)}^{\frac{1}{2}} \right){(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}} \left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}.{(x+1)}^{\frac{-1}{3}} - \left(x.\left[{(x^2+1)}^{\frac{1}{2}} \right]+{(x^2+1)}^{\frac{1}{2}} \right){(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}}](/latexrender/pictures/0ed45026ab522254eb7510609889a81d.png)
Por fim, use a regra da cadeia novamente:
![\left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}.{(x+1)}^{\frac{-1}{3}} - \left(2x^2.\frac{1}{2}.{(x^2+1)}^{\frac{-1}{2}}+{(x^2+1)}^{\frac{1}{2}} \right){(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}} \left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}.{(x+1)}^{\frac{-1}{3}} - \left(2x^2.\frac{1}{2}.{(x^2+1)}^{\frac{-1}{2}}+{(x^2+1)}^{\frac{1}{2}} \right){(x+1)}^{\frac{2}{3}}}{{(x+1)}^{\frac{4}{3}}}](/latexrender/pictures/802a88c68311a37f29e8e694cbca22b7.png)
Simplificando:
![\left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}-x^2.{(x^2+1)}^{\frac{-1}{2}}-{(x^2+1)}^{\frac{1}{2}}}{{x+1}} \left[y \right] = \frac{x{(x^2+1)}^{\frac{1}{2}}.\frac{2}{3}-x^2.{(x^2+1)}^{\frac{-1}{2}}-{(x^2+1)}^{\frac{1}{2}}}{{x+1}}](/latexrender/pictures/6e98b5c57b75f9fd0619b749e5e2a248.png)
![\left[y \right] = \frac{2x-x^2-1}{3(x+1)} \left[y \right] = \frac{2x-x^2-1}{3(x+1)}](/latexrender/pictures/12ade31059ee713576edfa86271c3dfe.png)
Transformando a equação quadrática em polinômio:
![\left[y \right] = \frac{-(x-1)^2}{3(x+1)} \left[y \right] = \frac{-(x-1)^2}{3(x+1)}](/latexrender/pictures/d44338642115c5cfff3851db582343a9.png)