• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral da secante

[Cálculo] Integral da secante

Mensagempor ARCS » Ter Ago 23, 2011 18:15

Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Cálculo] Integral da secante

Mensagempor Neperiano » Ter Ago 23, 2011 19:36

Ola

Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Cálculo] Integral da secante

Mensagempor LuizAquino » Ter Ago 23, 2011 23:02

ARCS escreveu:Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?


Essa estratégia, bem esperta, é realizada já pensando na utilização da técnica de substituição no passo seguinte.

A forma de "deduzi-la" seria exatamente pensando na questão: o que devo multiplicar para depois poder usar a técnica de substituição?

Comparado a quem teve pela primeira vez essa ideia, que foi bastante criativa, o nosso trabalho é bem simples: aprendê-la (que é diferente de decorá-la).

Neperiano escreveu:Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito

Sim, ajuda.

\int \sec x\, dx = \int \frac{1}{\cos x}\, dx = \int \frac{\cos x}{\cos^2 x}\, dx = \int \frac{\cos x}{1 -\,\textrm{sen}^2\, x}\, dx

Fazendo a substituição u = \,\textrm{sen}\,x e du = \cos x\, dx, obtemos

\int \sec x\, dx = \int \frac{1}{1 - u^2}\, du = \frac{1}{2}\int \frac{1}{1 - u} + \frac{1}{1 + u}\, du = \frac{1}{2}(-\ln |1 - u| + \ln|1+u|) + c = \ln\sqrt{\left|\frac{1+u}{1-u}\right|} + c = \ln\sqrt{\left|\frac{1+\,\textrm{sen}\,x}{1-\,\textrm{sen}\,x}\right|} + c

Para deixar a família de primitivas no formato canônico, faremos o desenvolvimento abaixo.
\int \sec x\, dx = \ln\sqrt{\left|\frac{1+\,\textrm{sen}\,x}{1-\,\textrm{sen}\,x}\right|} + c = \ln\sqrt{\left|\frac{(1+\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}{(1-\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}\right|} + c = \ln \left|\frac{1+\,\textrm{sen}\,x}{\cos x}\right| + c = \ln |\sec x + \,\textrm{tg}\,x| + c
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.