• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Sáb Jul 30, 2011 17:27

Calcule \lim_{x\rightarrow1}\frac{(3-x^3)^{4}-16}{x^3-1}

Solução:

Façamos u=3-x^3; assim temos:

\frac{(3-x^3)^{4}-16}{x^3-1}= \frac{u^4-16}{2-u} com u=3-x^3 e x\neq1
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sáb Jul 30, 2011 17:30

Para x\rightarrow1, u\rightarrow2. Então:

\lim_{x\rightarrow1}\frac{(3-x^3)^{4}-16}{x^3-1}

\lim_{u\rightarrow2}\frac{u^4-16}{2-u}

\lim_{u\rightarrow2}\frac{(u-2)(u+2)(u^2+4)}{(2-u)}

Minha dúvida seria neste momento, na resolução do livro mostra o seguinte

-\lim_{u\rightarrow2}\frac{(u+2)(u^2+4)}{(2-u)}= -32

Só que não consigo compreender este sinal de negativo antes do limite, joguei no wolframalpha e resultou em -32. Mas eu achava que a resposta seria 32
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor giulioaltoe » Dom Jul 31, 2011 14:32

eu nao intendi o porque da sua duvida! sendo que ao inverter o sinal do denominador para "cortar" com o numerador! a equação resultante vai ser dividida por -1 sendo assim sera igual a -32
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Dom Jul 31, 2011 14:57

Correto, foi falta de atenção
eu nem me dei conta que era 2-u, e cortei direto com u-2
Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.