• Anúncio Global
    Respostas
    Exibições
    Última mensagem

definite integral

definite integral

Mensagempor stuart clark » Ter Mai 31, 2011 05:52

\mathbf{\int_{0}^{\frac{\pi}{2}}cos^2x.ln(cos\;x)dx}
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: definite integral

Mensagempor Guill » Ter Jul 26, 2011 23:01

\int_{0}^{\frac{\pi}{2}}cos^2x.ln\left(cos x \right)dx


Podemos usar a integração por partes:

u = ln(cos x)
du = \frac{1}{cosx}dx

v = \frac{x+sen2x}{4}
dv = cos²x dx


Substituindo:

ln(cosx).\frac{x+sen2x}{4}-\int_{0}^{\frac{\pi}{2}}\frac{x+sen2x}{4}.\frac{1}{cosx}dx

ln(cosx).\frac{x+sen2x}{4}-\frac{1}{4}.\int_{0}^{\frac{\pi}{2}}\frac{x}{cosx}+\frac{sen2x}{cosx}

ln(cosx).\frac{x+sen2x}{4}-\frac{1}{4}.\int_{0}^{\frac{\pi}{2}}\frac{x}{cosx}+\frac{1}{4}\int_{0}^{\frac{\pi}{2}}\frac{sen2x}{cosx}


Resolvendo as integrais:

ln(cosx).\frac{x+sen2x}{4}-\frac{1}{4}.\int_{0}^{\frac{\pi}{2}}\frac{x}{cosx}-\frac{1}{4}\int_{0}^{\frac{\pi}{2}}\frac{sen2x}{cosx}

ln(cosx).\frac{x+sen2x}{4}-\frac{1}{4}.\left(\frac{x^2}{ln(cosx)}-\int_{0}^{\frac{\pi}{2}}ln(cosx)dx \right)-\frac{1}{2}.\left(\int_{0}^{\frac{\pi}{2}}senx dx \right)

ln(cosx).\frac{x+sen2x}{4}-\frac{x^2}{4.ln(cosx)}+\frac{1}{2.cosx}}-\frac{cosx}{2} + C
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: definite integral

Mensagempor VtinxD » Qua Jul 27, 2011 22:18

Corrigindo: du= tg(x)dx (por causa da regra da cadeia)
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.