por alexandreredefor » Dom Jul 17, 2011 18:23
PARA QUAIS VALORES DE X A FUNÇÃO G É CONTINUA?
G(X)= {0, SE X É RACIONAL
{ X, SE X É IRRACIONAL
obs: não consegui utilizar uma chave só.
tive uma prova e não consegui resolver vou ter prova substituta sera que pode me auxiliar...
ou me indicar algum video que tem o assunto
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por Molina » Dom Jul 17, 2011 22:26
Boa noite, Alexandre.
Vou dar a ideia de como eu pensaria nesta questão e quero ver se você chega a mesma conclusão que eu:
Se imaginarmos os números reais como uma reta, teremos que cada ponto que forma esta reta são os números reais. Alguns pontos são os racionais e outros pontos são os irracionais. A união dos dois conjuntos de pontos formará a reta (

). Se retirarmos, por exemplo, os números irracionais será possível observar alguns "buracos" nesta reta. O restante que permanece na reta são os números racionais.
Um esboço disso seria:
______ _______ ____ _ ___ ____ _____________ ___ _ ____________ _ _____ ______________ _ _ ____
Colocando este esboço num sistema de coordenadas xy e esta reta com buracos sobre o eixo x, representaria parte do nosso problema em questão, pois para todo número racional, temos que a função vale 0. Falta saber o que fazer com esses pontos que retiramos.
Lembre-se que para uma função ser contínua ela não tem "buracos", ou seja, temos que desenhar toda a função "sem tirar o lápis do papel".
Então, quais os valores que esses pontos com "buracos" devem assumir para que esses "buracos" não existam mais sobre esta reta?

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por MarceloFantini » Seg Jul 18, 2011 02:37
É impossível esboçar essa função, visto que todo intervalo real contém um número infinitos de números racionais e irracionais.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Seg Jul 18, 2011 11:11
Temos a função:

Note que

.
Como

, pelo Teorema do Sanduíche segue que

. Por outro lado, sabemos que g(0) = 0.
Portanto,

. Isso é o mesmo que dizer que g é contínua em x = 0.
Tome agora qualquer real

e qualquer real

. No intervalo

existem infinitos racionais e infinitos irracionais.
Considere que c seja irracional. Existem infinitos x racionais tais que

e

.
Por outro lado, considere que c seja racional. Existem infinitos x irracionais tais que

e

.
Em resumo: existem infinitos números x tais que

e

.
Logo,

. Isso é o mesmo que dizer que g não é contínua em x = c (lembrando-se que tomamos qualquer real

).
A conclusão final disso tudo é que a função g é contínua apenas para x = 0.
Observaçãoalexandreredefor escreveu:obs: não consegui utilizar uma chave só.
Para colocar apenas uma chave, use o comando LaTeX:
- Código: Selecionar todos
[tex]\begin{cases} caso_1 \\ caso_2 \\ caso_3 \\ \vdots \end{cases}[/tex]
O resultado desse comando é:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Molina » Seg Jul 18, 2011 11:42
Bom dia!
MarceloFantini escreveu:É impossível esboçar essa função, visto que todo intervalo real contém um número infinitos de números racionais e irracionais.
Um esboço seria desenhar uma retas com alguns buracos, representando apenas os números racionais e os faltantes seriam os números irracionais.
Este esboço seria apenas para chegar a conclusão que para ser contínua,

.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função continua
por Amparo » Dom Mar 09, 2008 16:14
- 1 Respostas
- 3834 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:52
Funções
-
- Função Contínua
por Ana Maria da Silva » Sex Mar 14, 2014 18:55
- 1 Respostas
- 1499 Exibições
- Última mensagem por Russman

Sáb Mar 15, 2014 10:45
Cálculo: Limites, Derivadas e Integrais
-
- [Função continua]
por stepg_ » Dom Set 14, 2014 13:41
- 1 Respostas
- 1568 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:27
Cálculo: Limites, Derivadas e Integrais
-
- Função contínua
por felipe_pereira96 » Qua Jan 27, 2016 12:17
- 1 Respostas
- 1692 Exibições
- Última mensagem por adauto martins

Qui Jan 28, 2016 10:00
Funções
-
- Domínio função contínua
por emanes » Seg Out 01, 2012 09:19
- 3 Respostas
- 1933 Exibições
- Última mensagem por MarceloFantini

Seg Out 01, 2012 10:04
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.