por Jaison Werner » Sáb Jun 11, 2011 15:24
CALCULE PELA REGRA DE SIMPSON O VALOR
![\int_{1}^{3}x\sqrt[]{x}, \int_{1}^{3}x\sqrt[]{x},](/latexrender/pictures/522a0ad41c25cfde9941c793f55dc73b.png)
, com n=4:
-
Jaison Werner
- Usuário Parceiro

-
- Mensagens: 82
- Registrado em: Sex Abr 23, 2010 20:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
por Jaison Werner » Sáb Jun 11, 2011 15:49
h=

I=

h=

![{y}_{0}=1\sqrt[]{1}=1 {y}_{0}=1\sqrt[]{1}=1](/latexrender/pictures/9a48ace97bdeb65824da7f456a3dbfc4.png)
![{y}_{1}=1,5 \sqrt[]{1,5}=1,84 {y}_{1}=1,5 \sqrt[]{1,5}=1,84](/latexrender/pictures/e9e5f36ebe7b3f6d624bd873cd6bc66b.png)
![{y}_{2}=2\sqrt[]{2}=2,83 {y}_{2}=2\sqrt[]{2}=2,83](/latexrender/pictures/41df70caae66d2c26b0137e235661436.png)
I =

I= 2,5

""(£)
![{E}_{t}= \frac{-0,67}{90}.0,56
[tex]{E}_{t}=-0,004 {E}_{t}= \frac{-0,67}{90}.0,56
[tex]{E}_{t}=-0,004](/latexrender/pictures/430152c9481ec1a02027ee70fbb7171a.png)
f(x)=
![x\sqrt[]{x} x\sqrt[]{x}](/latexrender/pictures/e6a24ceea2ab1c05e7117be670ebdb01.png)
f(x)=x.

f(x)=

f(x)=

f"(x)=

f""(x)=

f""(x)=

f""(x)=

f""(x)=
![\frac{9}{16}.\frac{1}{\sqrt[]{{x}^{5}}} \frac{9}{16}.\frac{1}{\sqrt[]{{x}^{5}}}](/latexrender/pictures/cb096b35789386da82b4aaaa5a6a4c7a.png)
f"""(1)=
![\frac{9}{16\sqrt[]{{1}^{5}}} \frac{9}{16\sqrt[]{{1}^{5}}}](/latexrender/pictures/5c0eac2b6ab526ff8a59a083ead98327.png)
f""(1) = 0,56
-
Jaison Werner
- Usuário Parceiro

-
- Mensagens: 82
- Registrado em: Sex Abr 23, 2010 20:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
por Jaison Werner » Sáb Jun 11, 2011 15:50
Este meu calculom está correto?Alguem poderia me responder por favor?
-
Jaison Werner
- Usuário Parceiro

-
- Mensagens: 82
- Registrado em: Sex Abr 23, 2010 20:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
por LuizAquino » Sáb Jun 11, 2011 19:12
Esse mesmo exercício foi resolvido no tópico:
Re: iNTEGRAISviewtopic.php?f=120&t=4841#p16214Quanto ao cálculo de

da função

, de fato temos que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4134 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4213 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2704 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2721 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.