• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de Limite

Exercicio de Limite

Mensagempor Claudin » Sáb Mai 14, 2011 17:01

Gostaria de saber como resolver esse limite!

\lim_{x\rightarrow-\infty}\frac{(x^6+5x^4-7x^3+18x^2)^16}{(x^3)^30}

obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercicio de Limite

Mensagempor Molina » Sáb Mai 14, 2011 18:20

Boa tarde.

Quando você escrever potência no LaTeX e o expoente tiver dois ou mais algarismos há a necessidade de coloca-lo entre { }. Senão fica apenas o primeiro algarismo considerado um expoente.

Claudin escreveu:Gostaria de saber como resolver esse limite!

\lim_{x\rightarrow-\infty}\frac{(x^6+5x^4-7x^3+18x^2)^16}{(x^3)^30}

obrigado


\lim_{x\rightarrow-\infty}\frac{(x^6+5x^4-7x^3+18x^2)^{16}}{(x^3)^{30}}=\lim_{x\rightarrow-\infty}\frac{(x^6+5x^4-7x^3+18x^2)^{16}}{x^{90}}

Perceba que elevando o numerador terá uma estrutura assim: x^{96}+... onde as outras partes literais são menores do que x^{90}.

Ou seja, dividindo o numerador e o denominador por x^{90} temos uma estrutura assim:

\lim_{x\rightarrow-\infty}\frac{(x^{96}+...)}{x^{90}}=

=\lim_{x\rightarrow-\infty}\frac{(x^{96}+...) \div x^{90}}{x^{90} \div x^{90}}=

=\lim_{x\rightarrow-\infty}\frac{(x^{6}+...)}{1} = \infty

Perceba que a parte dos três pontos (...) ficará do tipo \frac{a}{x^b}, onde a é um número real e b um valor positivo. Quando x \rightarrow \infty este valor tende a 0, por isso chegamos no limite igual a infinito.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Exercicio de Limite

Mensagempor Claudin » Dom Mai 15, 2011 11:57

Obrigado pela ajuda!

Deu pra compreender agora.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.