por mat1288 » Qua Mai 04, 2011 13:46

X tendendo a + infinito.
-
mat1288
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Abr 26, 2011 23:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por LuizAquino » Qua Mai 04, 2011 17:09
mat1288 escreveu:
Por favor, escreva o exercício de forma adequada.
O que está escrito acima é na verdade:

Porém, esse limite não resulta em 2/7.
Além disso, o exercício informa algo sobre as constantes
a e
b?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Molina » Qua Mai 04, 2011 20:14
Boa noite.
Acho que é assim:

Vamos ver?


Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por LuizAquino » Qua Mai 04, 2011 20:39
Vale a pena lembrar que se a intenção era escrever

,
então se deveria ter usado algo como:
![\lim_{x\to +\infty}[5{x}^{4}+3{x}^{3}+2{x}^{2}+4]/[(4a+2){x}^{6}+(b-2){x}^{4}-2{x}^{2}-1]=\frac{2}{7} \lim_{x\to +\infty}[5{x}^{4}+3{x}^{3}+2{x}^{2}+4]/[(4a+2){x}^{6}+(b-2){x}^{4}-2{x}^{2}-1]=\frac{2}{7}](/latexrender/pictures/14f3f5970b9b4ebfbd60994285185d6f.png)
.
O uso dos delimitadores de forma adequada é fundamental! Já é a segunda vez que digo isso a
mat1288. Vide o tópico:
Resolva a expressão:viewtopic.php?f=120&t=4551
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcule o limite!
por mat1288 » Qua Abr 27, 2011 00:09
- 2 Respostas
- 1612 Exibições
- Última mensagem por LuizAquino

Qua Abr 27, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- Calcule o limite da sequência
por Crist » Dom Fev 24, 2013 20:53
- 3 Respostas
- 1986 Exibições
- Última mensagem por Crist

Seg Fev 25, 2013 10:06
Cálculo: Limites, Derivadas e Integrais
-
- P.G., calcule Sn=9+99+999... +10n-1
por georgefdfdl » Qui Nov 10, 2011 23:49
- 1 Respostas
- 1507 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 17:41
Progressões
-
- calcule y
por Guilhermme » Sáb Mar 31, 2012 17:06
- 4 Respostas
- 3861 Exibições
- Última mensagem por Nico Romani

Qui Mar 31, 2016 17:01
Geometria Analítica
-
- Calcule a e b
por andersontricordiano » Dom Mar 02, 2014 12:01
- 3 Respostas
- 4468 Exibições
- Última mensagem por nat-larissa

Seg Mar 03, 2014 20:12
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.