por Ariane » Ter Out 21, 2008 21:33
Olá,
Primeiro gostaria de parabenizá-los pela iniciativa de dividir dúvidas e sabedorias. Só olhando os tópicos já me ajudou muito, mas uma dúvida permanece, referente ao exercício:

Sendo que o numerador todo é uma raiz, ou seja, raiz quadrada de x^2-2x+2. (não consegui colocar raiz na fórmula).
Sei que devo colocar a maior potência de x em evidência, e depois o x sai da raiz e fica como módulo. A questão é, o fato do x estar em módulo isso altera em alguma coisa o desenvolvimento? Agarrei aí e não consigo continuar, pois o x no numerador fica |x|, mas no denominador fica somente x. Fiquei na dúvida se posso cortar ou não.
E caso o limite fosse: x tende a menos infinito, com o restante igual?
-
Ariane
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Out 21, 2008 20:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Molina » Qua Out 22, 2008 12:23
Boa tarde, Ariane.
Verifica se eu montei a função correta:
![\lim_{x\rightarrow \infty}\frac{\sqrt[]{{x}^{2}-2x+2}}{x+1} \lim_{x\rightarrow \infty}\frac{\sqrt[]{{x}^{2}-2x+2}}{x+1}](/latexrender/pictures/b99c1b06f580fdac663923cc9cd17114.png)
O grande lance quando aparece raiz na jogada é tentar tirá-la dali.
E como fazer isso? Normalmente multiplicando por ela no numerador
e no denominador (já que seria mesma coisa que multiplicar por 1):
![\lim_{x\rightarrow \infty}\frac{\sqrt[]{{x}^{2}-2x+2}}{x+1}.\frac{\sqrt[]{{x}^{2}-2x+2}}{\sqrt[]{{x}^{2}-2x+2}} \lim_{x\rightarrow \infty}\frac{\sqrt[]{{x}^{2}-2x+2}}{x+1}.\frac{\sqrt[]{{x}^{2}-2x+2}}{\sqrt[]{{x}^{2}-2x+2}}](/latexrender/pictures/59bb0ed05e5e7afd9c3a8be825612901.png)
Fazendo isso você concorda que a raiz sai fora?
A partir dai é só resolver.
Bom estudo!
Espero mais dúvidas.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites de funcoes no infinito
por G-Schmitt-Jr » Sex Mai 30, 2014 12:19
- 1 Respostas
- 1423 Exibições
- Última mensagem por Janoca

Seg Jun 16, 2014 02:35
Cálculo: Limites, Derivadas e Integrais
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3371 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- URGENTE! funções racionais.
por Hugo23 » Dom Mar 13, 2011 13:20
- 6 Respostas
- 3744 Exibições
- Última mensagem por MarceloFantini

Dom Mar 13, 2011 19:04
Funções
-
- Primitivas de funções racionais
por rodrigonapoleao » Seg Dez 17, 2012 14:51
- 1 Respostas
- 1861 Exibições
- Última mensagem por young_jedi

Ter Dez 18, 2012 10:25
Funções
-
- primitivaçao de funçoes racionais
por rodrigonapoleao » Ter Dez 18, 2012 19:16
- 1 Respostas
- 1209 Exibições
- Última mensagem por e8group

Qua Dez 19, 2012 06:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.