e diz que [x] representa um inteiro menor ou igual a x.Entendi o gráfico da função escada que fica assim http://www.wolframalpha.com/input/?i=in ... rt+of+x%29 somando as áreas dá 2. Mas a resposta não precisa do gráfico, ou pelo menos esta dizendo para calcular sem mencionar o gráfico.
Então sem o gráfico: entendi que tem que "jogar" -1 e 3 no x, daí vem a sequência -1, 0, 1, 2 e 3 que são os valores que a função assume nesse intervalo. Depois disso, seguindo o raciocínio do Apostol, tem que visualizar as partições (segmentos como no gráfico aí em cima). Assumindo que é uma função f(x) = x (o gráfico fica sendo a reta que passa pela origem e tem y = x para todos os pontos, vi isso com o grupo de estudos. Da reta da função vem os pontos da função escada, fechada a esquerda e aberta a direita). A parte mais complicada esta sendo a notação. Os intervalos, por exemplo o primeiro, fica
. A função vale -1 nesse ponto e tem "base da partição" -1 tambem. Daí a soma, tem o símbolo da somatória, ou o professor disse q tb pode escrever
. As partições escreve base x altura ou altura x base, tanto faz? Na notação do grupo de estudos ficou
= -1 . (0 -(-1)) + 0 . (-1 . 0) + 1 . (2 - 1) + 2 . (3 - 2)Sobre o Apostol: até essa parte de funções fáceis de integrar esta bem, nada muito dificil.

.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.