por Kelvin Brayan » Dom Fev 20, 2011 17:04
Olá, será que alguém poderia me ajudar com a seguinte questão de matemática?
01.(UFU-MG) um maratonista calcula que, se correr a uma velocidade constante de 10km/h, chegará ao fim do percuso às 10:00 horas. Contudo, se sua velocidade constante for 15 km/h, ele chegará às 08:00 horas. Para que ele chegue exatamente às 09:00 horas, sua velocidade constante deverá ser de...
Tentei resolvê-la, mas não consegui. Nem ao menos tenho ideia de como iniciá-la !
-
Kelvin Brayan
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Dom Fev 20, 2011 16:50
- Localização: Varginha - MG
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Inglês
- Andamento: cursando
por Molina » Seg Fev 21, 2011 02:01
Boa noite, Kelvin.
Primeiramente temos que saber que
velocidade é deslocamento sobre tempo:

Agora, pelos dados do exercício temos que:


e


Perceba que x (distância) é a mesma nas duas equações e que a diferença entre os tempos t de uma para a outra é de 2h. Então podemos fazer:

E com isso:

e

Igualando as duas equações:



Este era o tempo que ele demoraria chegando as 10:00. Por isso, podemos concluir que a corrida começará as 4:00.
Pela fórmula da velocidade você pode concluir que a distância x percorrida neste corrida é de 60km.
Agora fica fácil usar novamente a fórmula da velocidade para descobrir a velocidade para chegar as 9:00.



Qualquer dúvida, informe.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Kelvin Brayan » Qua Fev 23, 2011 09:50
Muito obrigado, a resposta está corretíssima.
Valeu mesmo aí pela força !
-
Kelvin Brayan
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Dom Fev 20, 2011 16:50
- Localização: Varginha - MG
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Inglês
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão matemática
por gustavomatteo » Qui Mar 02, 2017 18:45
- 0 Respostas
- 2382 Exibições
- Última mensagem por gustavomatteo

Qui Mar 02, 2017 18:45
Lógica e Conjuntos
-
- Questão de matemática e administração
por 1marcus » Sáb Nov 03, 2018 23:48
- 0 Respostas
- 4487 Exibições
- Última mensagem por 1marcus

Sáb Nov 03, 2018 23:48
Matemática Financeira
-
- [questao do cefet mg matemática]
por tayna01 » Ter Abr 22, 2014 12:13
- 1 Respostas
- 2629 Exibições
- Última mensagem por adauto martins

Seg Jan 05, 2015 14:52
Números Complexos
-
- QUESTÃO DE MATEMÁTICA FINANCEIRA COM LOGARÍTIMOS
por saulfiterman » Seg Ago 20, 2012 21:26
- 1 Respostas
- 3385 Exibições
- Última mensagem por LuizAquino

Seg Set 24, 2012 10:50
Logaritmos
-
- Matemática Financeira - Questão com Porcentagem
por joedsonazevedo » Qui Nov 08, 2012 14:50
- 6 Respostas
- 6525 Exibições
- Última mensagem por saberdigitalnet

Sáb Nov 24, 2012 21:01
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.