por OtavioBonassi » Sáb Jan 15, 2011 14:57
"O valor de

é : "
Galera, tentei fazer essa integral por aquele método de divisao de polinomios ,e fazer A + B + C etc etc mas não deu certo nao ,alguem tem alguma idéia ?
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por MarceloFantini » Sáb Jan 15, 2011 19:55
Como você fez a divisão? Talvez tenha feito errado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por OtavioBonassi » Dom Jan 16, 2011 01:15
Então Fantini ,mas acho que nao é por esse jeito que eu tava fazendo não cara, sei lá
porque a resposta pro exercicio é 4ln2 - pi ,da onde raios eu vou tirar um pi fazendo por esse método ?! Seguindo esse caminho ai eu vou cair em umas integrais de polinomios, sem idéia de como chegar nesse resultado
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por MarceloFantini » Dom Jan 16, 2011 14:55
Ainda não consegui resolver. Curiosidade: de onde tirou essa integral?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por OtavioBonassi » Dom Jan 16, 2011 16:40
Tirei da prova de transferência USP 2009
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Santa Lucci » Qui Fev 03, 2011 15:37
Olá, tudo bom? Segue a minha resolução, perdoe-me pelos possíveis erros.

Usando o método das frações parciais...



Montando e resolvendo um sistema de equações, descobrimos que

e

Então,
Como a integral indefinida de

é

; e a de

é

, temos (já substituindo os extremos de integração),
![\int_{0}^1 \frac {4}{x+1} - \frac{4}{x^2+1} dx = 4 [ln(2)-ln(1)] - 4[arctg(1)-arctg(0)] \int_{0}^1 \frac {4}{x+1} - \frac{4}{x^2+1} dx = 4 [ln(2)-ln(1)] - 4[arctg(1)-arctg(0)]](/latexrender/pictures/98b5dd7dbc6c2cc0d1686e9a383a7925.png)
Portanto,

Att,
Santa Lucci.
-
Santa Lucci
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Dom Jan 02, 2011 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
por Santa Lucci » Qui Fev 03, 2011 15:38
Olá, tudo bom? Segue a minha resolução, perdoe-me pelos possíveis erros.

Usando o método das frações parciais...



Montando e resolvendo um sistema de equações, descobrimos que

e

Então,
Como a integral indefinida de

é

; e a de

é

, temos (já substituindo os extremos de integração),
![\int_{0}^1 \frac {4}{x+1} - \frac{4}{x^2+1} dx = 4 [ln(2)-ln(1)] - 4[arctg(1)-arctg(0)] \int_{0}^1 \frac {4}{x+1} - \frac{4}{x^2+1} dx = 4 [ln(2)-ln(1)] - 4[arctg(1)-arctg(0)]](/latexrender/pictures/98b5dd7dbc6c2cc0d1686e9a383a7925.png)
Portanto,

Att,
Santa Lucci.
-
Santa Lucci
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Dom Jan 02, 2011 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Econômicas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão estranha
por Kelvin Brayan » Ter Abr 19, 2011 13:35
- 2 Respostas
- 2048 Exibições
- Última mensagem por Kelvin Brayan

Ter Abr 19, 2011 14:35
Álgebra Elementar
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4133 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4210 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2704 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.